ASSESSING PHENOTYPIC VARIATION AND ECOLOGICAL VERSATILITY IN SELECTED CATARRHINE PRIMATES by ANDREA R ELLER A DISSERTATION Presented to the Anthropology Department and the Graduate School of the University of Oregon in partial fulfillment of the requirements for the degree of Doctor of Philosophy December 2019 DISSERTATION APPROVAL PAGE Student: Andrea Rae Eller Title: Assessing Phenotypic Variation and Ecological Versatility in Selected Catarrhine Primates This dissertation has been accepted and approved in partial fulfillment of the requirements for the Doctor of Philosophy degree in the Anthropology Department by: Frances J. White Chairperson Stephen R. Frost Advisor Kirstin N. Sterner Core Member Scott Blumenthal Core Member Samantha Hopkins Institutional Representative and Kate Mondloch Interim Vice Provost and Dean of the Graduate School Original approval signatures are on file with the University of Oregon Graduate School. Degree awarded December 2019 ii © 2019 Andrea R. Eller iii DISSERTATION ABSTRACT Andrea R. Eller Doctor of Philosophy Department of Anthropology December 2019 Title: Assessing Phenotypic Variation and Ecological Versatility in Selected Catarrhine Primates Generalist and specialist species can be broadly distinguished by their ecological tendencies to utilize many available resources, or a selected few. Those organisms with more ecological versatility may have an advantage in the face of environmental fluctuation or rapid ecological change (Turley and Frost 2018; Antón, Potts, and Aiello 2014; Kuzawa and Bragg 2012; Davidson, Jennions, and Nicotra 2011; Ash and Gallop 2007). Developmental plasticity may provide a mechanism for fluctuating environmental pressures to impart increased phenotypic variation to an adult population (Antón et al 2016; West-Eberhard 2003). The aim of this dissertation is to evaluate whether more ecologically versatile species will exhibit greater phenotypic variation. Eighty-one skeletal traits were analyzed across cranial, dental, and postcranial anatomic regions, using a total sample of 4084 individuals in six selected catarrhine primate species. To do this, I reported measures of variation for each skeletal trait (sample variation, standard deviation, and the coefficient of variation), assessed variation using principal components analyses, and ultimately tested for significant differences between taxa using general linearized models. The main hypothesis of this dissertation, that ecological versatility positively iv correlates with phenotypic variation, was not supported among the majority of skeletal features examined. Where significant results did occur, such as cranial differences between male Pan troglodytes and Homo sapiens (Chapter One), where Homo sapiens displayed more variation, or long bone length differences in Papio and Theropithecus (Chapter Two), where P. hamadryas displayed more variation, the patterns were subtle and sometimes contradictory. Chapter Three results indicate that sample sizes required for accurately detecting patterns of phenotypic variation range from 30-52 individuals for molar areas, 10-16 individuals for femoral lengths. These sample sizes are substantially larger than those offered by Antón, Potts, and Aiello (2014), indicating that the ability to detect increased intra-taxon variation within more ecologically versatile species may be beyond currently available hominin fossil sample sizes. Future investigations should focus on traits which are developmentally plastic, such as long bone lengths, as informative for understanding the adaptive relationship between ecological versatility and phenotypic variation. A complete list of specimens used in this study is available in Supplemental Files. v CURRICULUM VITAE NAME OF AUTHOR: Andrea R. Eller GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED: University of Oregon, Eugene Middle Tennessee State University, Murfreesboro DEGREES AWARDED: Doctor of Philosophy, Anthropology, 2019, University of Oregon Bachelor of Science, Sociology, 2007, Middle Tennessee State University AREAS OF SPECIAL INTEREST: Biological Anthropology Primate and human anatomy; evolutionary theory; human-impacted ecologies PROFESSIONAL EXPERIENCE: Postdoctoral Fellow, Smithsonian Institution’s National Museum of Natural History, Department of Anthropology, 2019-present Graduate Teaching Fellow, University of Oregon, Department of Anthropology, 2011-2018 GRANTS, AWARDS, AND HONORS: Peter S. Buck Postdoctoral Fellowship, “EMPHASIS: Environmental mismatch in primates and humans, anthropogenic settings and impacts survey”, Smithsonian Institution’s National Museum of Natural History, 2018 vi PUBLICATIONS: Eller, A.R., Pobiner, B., Friend, S., Austin, R.M., Hofman, C.A. & Sholts, S.B. (2019) A Chomped Chimp: New evidence of tooth marks on an adult chimpanzee (Pan troglodytes verus). (In Revision) American Journal of Physical Anthropology. Dore, K.M., Eller, A.R. and Eller, J.L. (2018). Identity construction and symbolic association in farmer-vervet monkey (Chlorocebus aethiops sabaeus) interconnections in St. Kitts. Folia Primatologica, 89 (1), 63-80. vii ACKNOWLEDGMENTS It’s with gratitude that I acknowledge my advisor, Steve Frost, and my dissertation committee (Kirstin Sterner, Scott Blumenthal, Samantha Hopkins) for their thoughtful comments on this project. Special gratitude is also extended to those who shared their data: Monya Anderson, Julia Arenson, Eric Delson, Steve Frost, Emily Guthrie, Kieran McNulty, and Michael Plavcan. I am also grateful to the Cleveland Museum of Natural History and the Smithsonian Institution’s National Museum of Natural History, for allowing me access to their collections. viii This dissertation is dedicated to my mom, the original Dr. Eller. Thank you for being my unicorn. ix TABLE OF CONTENTS Chapter Page I. INTRODUCTION: ECOLOGICAL VERSATILITY AND PHENOTYPIC VARIATION ............................................................................................................ 1 II. CHAPTER ONE: CRANIODENTAL VARIATION AND ECOLOGICAL VERSATILITY IN SELECTED CATARRHINE PRIMATES ............................. 5 Introduction ............................................................................................................ 5 Background ............................................................................................................ 8 Measuring Variation ........................................................................................ 8 Defining the Skeletal Phenotype ...................................................................... 9 Sampled Catarrhine Primates ........................................................................... 10 Materials and Methods ........................................................................................... 12 Craniodental Samples ...................................................................................... 12 Analyses ........................................................................................................... 14 Data Transformations ................................................................................. 14 Measuring Variation .................................................................................. 16 Assessing Variation ................................................................................... 17 Results .................................................................................................................... 18 Measures of Variation ...................................................................................... 19 Principal Components Analyses ...................................................................... 23 Generalized Linear Models .............................................................................. 30 Discussion .............................................................................................................. 33 x Chapter Page Conclusion ............................................................................................................. 36 III. CHAPTER TWO: POSTCRANIAL VARIATION AND ECOLOGICAL VERSATILITY IN SELECTED CATARRHINE PRIMATES ............................ 38 Introduction ............................................................................................................ 38 Background ............................................................................................................ 40 Materials and Methods ........................................................................................... 43 Study Species ................................................................................................... 43 Skeletal Protocol .............................................................................................. 44 Data Analysis ......................................................................................................... 47 Principal Components Analyses ...................................................................... 47 Measures of Variation ...................................................................................... 48 Analyses of Variation ...................................................................................... 49 Results .................................................................................................................... 50 Principal Components Analyses ...................................................................... 50 Measures of Variation ...................................................................................... 56 Analyses of Variation ...................................................................................... 58 Discussion .............................................................................................................. 64 Hypothesis Assessment .................................................................................... 65 Confounding Factors ........................................................................................ 68 Postcranial Features ......................................................................................... 69 xi Chapter Page Conclusion ............................................................................................................. 71 IV. CHAPTER THREE: MEASURING VARIATION IN FOSSIL HOMININS: HUMAN EVOLUTION, ECOLOGICAL VERSATILITY, AND THE VARIABILITY SELECTION HYPOTHESIS .................................................... 74 Introduction .......................................................................................................... 74 Background .......................................................................................................... 75 Variability Selection Hypothesis ..................................................................... 75 Measuring Fossil Variation .............................................................................. 79 Materials and Methods ........................................................................................... 80 Sample Populations .......................................................................................... 80 Skeletal Data .................................................................................................... 82 Analyses of Sample Size .................................................................................. 83 Results .................................................................................................................... 84 Sample Variance .............................................................................................. 85 Sample Sizes for Reliably Measuring Variation .............................................. 96 Discussion .............................................................................................................. 98 Conclusion ............................................................................................................. 100 V. CONCLUSION: MEASURING SKELETAL VARIATION IN VERSATILE PRIMATES ............................................................................................................ 102 APPENDICES ............................................................................................................. 106 A. CRANIODENTAL SKELETAL MEASUREMENT PROTOCOL ................. 106 xii Chapter Page B. CRANIODENTAL MEASURES OF VARIANCE ......................................... 116 C. CRANIODENTAL ANALYSES OF VARIANCE .......................................... 145 D. POSTCRANIAL SKELETAL MEASUREMENT PROTOCOL .................... 155 E. POSTCRANIAL MEASURES OF VARIANCE ............................................. 168 F. POSTCRANIAL PRINCIPAL COMPONENTS ANALYSES ........................ 241 G. POSTCRANIAL ANALYSES OF VARIANCE ............................................. 246 REFERENCES CITED ................................................................................................ 268 SUPPLEMENTAL FILES EXCEL DATA: COMPLETE SPECIMEN SOURCE LIST xiii CHAPTER I: INTRODUCTION, ECOLOGICAL VERSATILITY AND PHENOTYPIC VARIATION Ecological versatility and related concepts (including terms such as generalism, heterotrophy, eurytopism, or adaptability) have been in common use across the life sciences since at least the latter half of the 20th century, when scholars published theoretical prospectuses on niche evolution (Levins, 1968), variation in mammals (Yablokov 1974), shifting balance theory (Wright 1982), and mammalian habitat theory (Vrba 1992). Mostly, ecological versatility refers to an organism having an ability to take advantage of a wide variety of environmental opportunities, perhaps even thriving in fluctuating ecologies (Bell 2010; Devictor, Julliard, and Jiguet 2008; Levins 1968). Generalist and specialist species refer to a broad definition of how organisms navigate their ecologies, whether by taking advantage of a large variety of available resources or by homing in on a selected few (Krebs and Davies 1993). Some studies suggest that ecological versatility, including diverse diets and habitat occupation, is correlated with an increased population-level phenotypic variation (Davidson, Jennions, and Nicotra 2011; Kussell and Leiber 2005; Lande and Shannon 1996; Yablokov 1974). Some assert that versatility as a trait has selective advantage, particularly in highly unpredictable or fluctuating environments (Lande 2014; Grove 2011; Potts 1998a; Lachmann and Jablonka 1996). The variability selection hypothesis (VSH) has been offered as an integrated perspective on the evolutionary effects of changing landscapes and climates on 1 populations of early Homo in eastern Africa around 2 million years ago (Antón et al 2016; Potts and Faith 2015; Antón, Potts, and Aiello 2014; Potts 2013, 2012, 2002, 1998a,b). The VSH asserts that early Homo populations may have had a selective advantage to surviving fluctuating environments, relative to contemporaneous australopiths (Potts 2013, 2012, 1998a). The hypothesis directly relates diverse habitats, phenotypic variation, and adaptive advantage in human evolution, and has been used to study such processes as social learning (Borg and Channon 2012), genetic inheritance modelling (Grove 2011), and ecological refugia use (Stewart and Stringer 2012). Another directly testable prediction of VSH (see Antón, Potts, and Aiello 2014), provided adequate samples, is that a more ecologically versatile primate species may display more phenotypic variation than less ecologically versatile species. This dissertation reflects my interests in the adaptive significance of generalism; the hypothesis that humans, some primates, and other mammals may have convergently evolved ecologically versatile lifeways in response to a fluctuating environment. My theoretical perspective focuses on the role of environmental factors, and those effects on the skeletal phenotype. Specifically, I investigate anatomical signatures of ecological versatility, including an increase in phenotypic variation among putatively versatilist catarrhine primate species. Further I assess the likelihood of detecting these signatures in the hominin fossil record, as has been previously proposed (Antón, Potts, and Aiello 2014). Catarrhine primates are an ideal group within which to evaluate these hypotheses, given the ecological variation across old world monkeys and apes, and existing hypotheses on the role of ecological versatility in human evolution. Primate study species 2 (Homo sapiens, Pan troglodytes, Papio hamadryas, Theropithecus gelada, Macaca fascicularis, and Macaca nemestrina) are analyzed as pairs, where one member of each pair is less ecological versatile than the other. Table 1 summarizes their ecological profiles, where putative versatilist species are highlighted in gray. In Chapter One, I evaluate phenotypic variation in 28 traits of the cranium and dentition across six catarrhine species. Craniodental materials are commonly found in fossil assemblages, yet cranial bones are known to be more variable across study taxa than dentition. Skeletal traits are linear measures of the cranium and molars; these were analyzed as two anatomic regions (cranial, dental) among a total sample of 4042 individuals. Statistical analyses include direct comparisons on measures of variance (sample variance, standard deviation, and coefficient of variation), principal components analysis, and generalized linear models to determine the magnitude of difference in variation between species pairs. In Chapter Two, I evaluate standing phenotypic variation in measures of the limb long bones to determine if more ecologically versatile primates display increased postcranial variation. Postcranial materials are less common and more difficult to associate with known individuals in the fossil record; yet, postcranial elements are more likely to vary across study taxa than does craniodental material due to the duration and quality of long bone growth. I include 53 linear measures of the humerus, radius, femur and tibia within six sampled catarrhine species (n=113). Assessment includes reporting measures of variance, and visualizing variation with principal components analyses. Significant difference between study pairs were analyzed using generalized linear models. 3 In Chapter Three, I use extant skeletal material, craniodental and postcranial, in hominoids Pan troglodytes and Homo sapiens to evaluate the sample sizes necessary to observe the increased phenotypic variation among more ecologically versatile species predicted by variability selection. Using the framework of VSH, Antón, Potts, and Aiello (2014) report the variation in several morphological features to argue that early Homo spp. tend to be more variable than australopith species. One potential concern with their analysis is that available early hominin sample sizes are limited. I evaluate the sample sizes necessary to test for differences in variance between populations using the several of the anatomic characters of Antón, Potts, and Aiello (2014; see Table 1) where I have equivalent skeletal data. Across these studies, factors which affect measures of variation (such as sexual dimorphism, body size, sample size, measurement type) and obscure relevant biological comparisons are examined and discussed. These potential confounding factors are important considerations when attempting to reliably and accurately detect significant sample variance differences between distinct populations. This dissertation contributes original data and analyses for understanding the ways in which population variation can, under proper conditions, reveal patterns of adaptive significance among catarrhines. 4 CHAPTER II: CRANIODENTAL VARIATION AND ECOLOGICAL VERSATILITY IN SELECTED CATARRHINE PRIMATES Introduction Concepts of ecological versatility (including terms such as generalism, heterotrophy, eurytopism, or adaptability) have been in common use across the life sciences since at least the latter half of the 20th century, when scholars published theoretical prospectuses on these concepts including niche evolution (Levins, 1968), variation in mammals (Yablokov 1974), shifting balance theory (Wright 1982), and mammalian habitat theory (Vrba 1992). More recent work using similar concepts has largely focused on evolutionary consequences of a fluctuating environment, i.e. how survival in a variable environment may be correlated with increased behavioral, genetic, or morphological diversity (Lande 2014; Kussell and Leiber 2005; Lachmann and Jablonka 1996; Lande and Shannon 1996). Although often used heuristically, ecological versatility and related terms mostly refer to an organism having an ability to take advantage of a wide variety of environmental opportunities, perhaps even thriving in fluctuating ecologies (Devictor, Julliard, and Jiguet 2008; Kussell and Leiber 2005; Levins 1968). The ecological tendency of some organisms to ‘specialize’ in a few resources (such as food type, or habitat) when others have a more ‘generalized’ approach has been observed for decades 5 (Krebs and Davies 1993). This concept has been used to refer to a variety of organisms including temperature range tolerances in ocean life (Kolbert 2016), to some particularly hardy species of rats, birds, grasses, monkeys, and humans (Sullivan 2004, rats; Morante‐ Filho, Arroyo‐Rodríguez, and Faria 2016, birds; Davidson, Jennions, and Nicotra 2011, grass; Richard, Goldstein, and Dewar 1989, macaques; Potts 1998b, humans). Thus, ecological specialists should benefit from environments that tend to be more stable and homogeneous through time and space, while ecological versatilists should benefit in heterogeneous environments (Devictor, Julliard, and Jiguet 2008; Östergård and Ehrlén 2005; Marvier, Kareiva, and Neubert 2004.; Kassen 2002; Futuyma and Moreno 1988). Yet, the ambiguity of the terms, and the diverse organisms to which they are applied, makes operationalizing ecological versatility a difficult task. Some researchers use this concept largely to mean behavioral changes in response to environmental change; for example, Borg and Channon’s (2012) study of increased social learning in variable environments, or Richard, Goldstein and Dewar’s (1989) weed macaques concept used to challenge phylogeny in deference to behavioral ecology types. Others are documenting physiological changes; for example, Stoessel, Kilbourne, and Fischer (2013) report on increased morphological variation across 236 bird species by ecology type, or see Davidson, Jennions, and Nicotra’s (2011) study of adaptational plant morphology and developmental plasticity. These are not mutually exclusive. It is useful to think of both behavioral adaptability (sociobehavioral traits involved in diverse food acquisition and habitat occupation), and phenotypic plasticity (the ability or tendency of an organism to alter its phenotype either temporarily or permanently relative to its environment) as equal 6 and intersecting aspects of ecological versatility (Jablonka and Lamb 2014; Pigliucci and Müller 2010). Extant nonhuman primates reflect a range of ecological versatility and provide an opportunity to examine the relationship between ecological versatility and phenotypic variation in our close relatives. Most modern species of arboreal primates travel in groups which are restricted to increasingly fractured forest ranges, with limited or seasonally available food sources (IUCN 2018; Mittermier 1988). Indeed, almost 70% of modern primates are threatened with extinction in the wild, or worse (IUCN, 2018). Only a few species have widespread populations, occur in both arboreal and terrestrial environments, and are able to supplement wild foods with human-cultivated, human-manufactured, and/or provisioned food sources (IUCN 2018; Rowe and Myers 2016). Those primate species which exhibit more ecological versatility may also exhibit increased phenotypic variation. Here, ecological versatility is defined as a suite of features including: dietary diversity, widespread habitat occupation, and social complexity usually in large groups; a less ecologically versatile primate would tend to have a restricted habitat, a limited dietary breadth, and smaller group sizes (concept derived from Potts’ versatilist traits, see Potts 1998a). Using three pairs of catarrhine species (Homo sapiens and Pan troglodytes, Papio hamadryas and Theropithecus gelada, Macaca fascicularis and Macaca nemestrina), I compare a more ecologically versatile species with a closely related species who is less ecologically versatile. Using sixteen measurements of the cranium, and twelve measurements of the molars, phenotypic variation between taxa is evaluated to determine if increased craniodental variation is positively correlated to ecological versatility. 7 Background Measuring Variation Standing phenotypic variation in a population is the total amount of variation in metric characteristics of the adult phenotype, such as a range of tail lengths or hindlimb widths. The amount of standing variation within a population is determined by a number of factors, including genetic variation and nutritional status (Yablokov 1974). In rapidly changing environments, or where a single breeding population's range covers a diverse array of habitats, there may be a selective advantage to maintaining polytypic traits (Grove 2014; Potts 2012; Davidson, Jennions, and Nicotra 2011; Levins 1968). Populations with more polytypic traits, more standing population variation, or both, may be able to buffer individuals from the oscillating pressures of an unpredictable or highly variable environment (Kuzawa and Bragg 2012; Potts 1998a; Levins 1968). In other words, more phenotypic variation can be the result of and the defense against a fluctuating environment. In order to assess the hypothesized correlation of an increase in phenotypic variation relative to an increase in ecological versatility, it’s important to distinguish between similar terms used here: variation, variability (or variable), and variance, as each reflect an aspect of understanding differences within a population. Variation is the range of qualitative or quantitative diversity displayed by a population, and this term is usually applied to a specific trait or suite of traits (e.g., Davidson, Jennions, and Nicotra 2011; Yablokov 1974; Simpson, Roe, and Lewontin 1960). Variation is best understood here as a specific amount of differences within a population at a given time. Variance is a statistical property, measuring the amount of variation in the population (Sokal and Rohlf 8 1995; Simpson, Roe, and Lewontin 1960). Variability can be defined as the presence of differences among individuals within a breeding population (Yablokov 1974; Simpson, 1944). Variability, and the related adjective variable, describes a potential to vary, or the characteristic of being capable of change. Rates of inter-population variability can be compared across differing populations, using equivalent traits, to reveal informative populational characteristics (Yablokov 1974, pg. 262). Of interest in this study is the amount of phenotypic variation which can be detected (using measures of statistical variance) across sampled species. Further, phenotypic variation is focused on dimensions of size, and not necessarily shape. Defining the Skeletal Phenotype Here, assessments of phenotypic variation are focused on craniodental materials for two central reasons. First, extant craniodental materials are relevant to hypotheses on primate ecological versatility which are derived in part from hominin craniodental fossil evidence (Antón, Potts, and Aiello 2014). Second, although there may be utility in describing “phenotypic variation” in the abstract sense for theoretical argument, operationalization of this term requires consideration of the inherent variability of any given aspect of the phenotype. Utilizing both cranial and dental material allows for exploration of varying aspects of the phenotype. Although craniodental materials are sometimes analyzed together, we should expect the sociobehavioral aspects of ecological versatility (diversity among dietary and habitat acquisition) to impact aspects of the phenotype differently based on factors such as tissue type and developmental variability. For example, the intermembranous developed bones of the cranium react differently to environmental pressures than do fully 9 occluded molar crowns (White and Folkens 2011; Irish and Scott 2015). Erupted permanent dentition doesn’t remodel; therefore, dentition should be less influenced by ontogenetic plasticity than the cranial measures (Irish and Scott 2015; Aiello and Wood 1994). A versatilist trait, like dietary diversity, where foods of differing hardness are consumed may impact the growing cranium (and thus adult cranial shape/size) due to a breadth of regular mastication forces but may not significantly change adult molar size. Thus, we should expect that molar crown variation (a trait under investigation here) is more likely to reflect standing genetic diversity alone, while cranial size variation is more likely to reflect both standing genetic variation and variation derived from the environment, i.e., developmental (phenotypic) plasticity. Additionally, measures of molar occlusal surfaces should produce less variation in catarrhine primates than cranial measures do, because of the relative anatomical conservation of molars across catarrhines and between the sexes (Delson et al 2000; Delson and Szalay 1980). Sampled Catarrhine Primates Modern primates reflect a range of ecological versatility. Some extant primates have widespread populations, occurring in multiple environments, while most species of primates are restricted to smaller ranges and specialized habitats (Rowe and Myers 2016; Groves 2011). We can recognize extant species with versatilist traits by their large and varied spatial distributions, broad dietary habits, and flexible socio-ecological patterns. The species pairs under study here are Homo sapiens and Pan troglodytes, where H. sapiens is the more ecologically versatile species; Papio hamadryas and Theropithecus gelada, where P. hamadryas is the more ecologically versatile species; as well as, 10 Macaca fascicularis and Macaca nemestrina, where M. fascicularis is the more ecologically versatile species; Table 1 summarizes their ecological profiles, where putative versatilist species are highlighted in gray. Ecological versatility in study species is determined by three main factors: size of geographic distribution, level of habitat diversity, and level of dietary diversity. Geographic distribution size, the area in which the species occurs, is considered “large” if the range spans a single continent or more, “small” if restricted to a single locale. Habitat diversity, the extent to which the species occupies heterogenous environments, is considered “high” if the species is known to occupy at least three distinct ecologies and “low” if the species occurs in a single ecology type. Dietary diversity, a general scale of dietary breadth, considers omnivores as regular consumers of grains, fruits, and meats to be “high” in Table 1: Ecological Summaries of Selected Catarrhines1 Geographic Habitat Dietary diversity; heavy Distribution Diversity Diversity preference for any Homo sapiens Large High High Pan troglodytes Med-Small Medium Medium one food type is Papio hamadryas Large High High Theropithecus Small Low Low considered “low” gelada Macaca fascicularis Large High High dietary diversity. Macaca nemestrina Medium Low Medium 1Geographic distribution from Rowe and Myers 2016, IUCN 2018; Habitat Here, all diversity from Rowe and Myers 2016, Wilson and Reeder 2005; Dietary diversity from Rowe and Myers 2016. three putative versatilists occupy at least a million square miles continuously: Humans occupy every temperate continent on the planet, Papio hamadryas (sensu lato) occupies a broad swath of Africa, and Macaca fascicularis occurs across much of southeast Asia, continuing into mainland China to the north (Rowe and Myers 2016, IUCN 2018). Theropithecus gelada 11 and Macaca nemestrina considered “low” in habitat diversity because they are restricted to a single ecology type, the grasslands and the rainforest, respectively (Wilson and Reeder 2005). Pan troglodytes occupies a relatively small geographic ranges in central and western Africa, and there are populations in both forest and savannah habitats (Rowe and Myers 2016). Study pairs were assigned for comparability in phylogeny and body size, in addition to ecological profiles. Species were matched as pairs on phylogeny as closely as possible to reduce non-relevant information from phenotypic shape and genetic distinctions. Matching pairs as closely as possible for body size also reduces non-relevant variation from the comparisons, because absolute size is related to total variation (Yablokov 1974; Simpson, Roe, and Lewontin 1960). These six species were also chosen because of their relative availability in museum collections, availability of published data relevant to this project, and extensive ecological descriptions in the literature. Materials and Methods Craniodental Samples To determine if more ecologically versatile species are more phenotypically variable, craniodental skeletal measurements were obtained among six catarrhine species. The total sample size is 4042 individuals, with 3531 individuals contributing cranial data, 675 individuals contributing dental data, and 164 individuals contributing both; see Table 2 for sample information. All specimen source information is available in Appendix A: Specimen Source List; this appendix includes all specimens used throughout this dissertation. 12 Twenty-eight linear measures were derived from the cranium and molars; see Appendix B: Craniodental Measurement Table 2: Sample specimens, by taxon Protocol for the complete measurement list Taxon Cranial Dental Homo sapiens 2524 42 and description. This protocol was Pan troglodytes 193 86 Papio hamadryas 511 380 specifically created to ensure comparability Theropithecus 42 57 Macaca 243 61 across studies, maximizing the utility of Mgaeclaadcaa 18 49 fascicuTloatraisl 3531 675 newly created data and the existing nemestrina reliability of traditional methods. Each measurement is cross-referenced with previously utilized skeletal measurement protocols to ensure comparability to previous work (esp. Frost et al 2003; Aiello and Wood 1994; Howells 1973). To ensure meaningful biological comparability across taxa, only standard anatomic landmarks and homologous molar measures are used. With few exceptions where no alternatives were possible, sample specimens were originally collected from the wild with geographic origin and subspecies designations documented. Sixteen cranial distance measures encompass aspects of the neurocranium, splanchnocranium, and basicranium. All measures are based on standard anatomical landmarks, and therefore the measures are homologous across study species. Cranial data is obtained from previously collected and/or published data; individual data collectors are listed in Appendix A. Cranial data were obtained from public datasets including PRIMO, Morphosource, and Howells’ cranial measurements (1973). Other specimens were provided by individual researchers with permission, including cranial data shared by K. McNulty, J. Arenson, and M. Anderson. Previously obtained cranial measurements are either calculated as linear distances from digitized Microscribe 3DX landmarks by the 13 author or, in the case of Howells’ data, is directly from published caliper measurements. Although cranial data are combined from different methodologies, previous studies have shown that combined digitized scans and caliper measures are interchangeable in many studies (Cooke and Terhune 2015). Twelve dental measures include those of the upper and lower permanent molars, buccolingual and mesiodistal maximum distances. Dental data was obtained by the author, using Mitiyuto digital calipers accurate to 0.01mm, and from previously collected and/or published data shared with permission by J. M. Plavcan. Both previously collected and original data were obtained by caliper measures; individual specimen data collectors are listed in Appendix A. Mesiodeistal maxima are directly equivalent between taxa, but buccolingual measures are slightly adjusted for old world monkeys due to varying sizes of the two lophs. Following Freedman (1957), two buccolingual measures, one across the mesial loph and another across the distal loph, are collected on cercopithecids (i.e. Papio, Theropithecus, and Macaca), but are averaged together to be comparable with hominoid measures. Analyses Data Transformations Measures of variance are relatively simple, yet sensitive, calculations (Sokhal and Rolfe 2001; Simpson, Roe, and Lewontin 1960). Determining the standing phenotypic variation in a sample, and comparing it to another biological sample, requires reducing the amount of variation from expected but irrelevant sources. Several steps were taken to reduce the amount of variation from known sources that are not the focus of this 14 investigation, such as absolute scale, ontogenetic stage, allometry, sexual dimorphism, and sample size. Absolute size differences between individuals may produce variation among the group which is unrelated to ecological differences between species. Each skeletal measure was divided by the geometric mean of all variables for that individual to control for absolute scale (e.g. Mosimann and Malley 1979). This procedure does not remove the influence of allometry on shape, however, morphological shape itself is not being analyzed here, other than its influence on general morphological variation. Therefore, in one set of analyses all data were adjusted across the total sample using the geometric mean. Values divided by the geometric mean in this way are referred to as "adjusted values" or "adjusted data" throughout this dissertation. All measurements were taken on adults; assessment of "adult" status was based on observed full eruption of the third molar. Furthermore, all analyses were run with sexes pooled as well as separately by sex to control for differing levels of sexual dimorphism. Finally, measures of variation can be sensitive to differences in sample size, although there is no generally recognized guideline on precisely when unequal sample sizes negatively affect results (Keppel 1993). To determine if sample size was a contributing factor to overall of patterns of variation across taxa, regressions were performed in MS Excel on sample size (n) per species/sex group as compared to the summed CV statistic for each. 15 Measuring Variation To describe the variation of the population overall, several measures of variance are reported including sample variance, standard deviation and coefficients of variation, each based on both raw and adjusted data. Variance ("#) is defined as the sum of the squared distances of each term from the population mean (%), divided by the number of terms in the sample (& − 1) (Sokal and Rohlf 1995). This statistic squares the distances of each term from the population mean, thus variance is exponentially bigger than the scale of the original terms. Trends in sample variation are therefore easy to see, but this statistic is sensitive to the size of the distribution and may not be directly comparable between samples of differing sizes. This statistic is also used in pairwise F-tests. Standard deviation of a population (") is the square root of the sum of the squared distances of each term from the population mean (%), divided by the number of terms in the sample (& − 1). This statistic is related in absolute numbers relative to the original terms, and is independent of the mean, but is also sensitive to the size of the distribution (Sokal and Rohlf 1995). The coefficient of variation (CV) conveys the standard deviation relative to the mean and is more robust relative to distribution size. Also known as relative standard deviation ()*+), and the coefficient of variation (,-), or (-), this statistic expresses the relationship between the standard deviation (") and the mean (%) as a ratio. This statistic is argued to be a more revealing tool when studying variation, as the relational nature of this statistic conveys information about the level of variance given the population mean and is divorced from any particular unit of measure (Yablokov 1974; Simpson, Roe, and Lewontin 1960). Due to the unique information presented from each statistic, all three are 16 reported using both raw and adjusted data for a total of 6 measures of variation for each species, by sex and by anatomic region. The most robust measure, CV, is used to rank species by total variation in tables of results. Assessing Variation In order to visually assess variation by taxon and among anatomic regions, principal components analysis (PCA) was used as an ordination and data reduction technique and performed separately on cranial and dental data in PAST (Hammer et al 2001). PCAs allow sample groups to be compared without bias; the amount of variation explained with each component reveals whether factors of interest (like ecological versatility). To more generally test the hypothesis that ecologically versatile species will exhibit more variance in adult skeletal traits than less versatile species, a generalized linear model (GLM) was applied to all six study taxa simultaneously, to determine if the mean variation of each taxon was different from each other (GLM). Each GLM was run on pooled sex, males only, and females only. Each GLM procedure was repeated for all three measures of variance, Sample Variance, Standard Deviation, and Coefficient of Variance; these measures were also taken from geomean adjusted data to correct for the effects of absolute body size. Each anatomic region (cranial, dental) was analyzed separately. These tests were performed in SAS: Statistical Analysis Software v9.4 using the GLM Procedure. If the GLM showed differences among taxa, or among taxon/sex categories, then pairwise T-tests with a Bonferroni correction were conducted to test how the taxa ranked 17 relative to each other. A Bonferroni correction adjusts the threshold of significance for pairwise T-tests by the number of groups being distinguished; a significant result within a GLM may not actually signal a difference among groups once the alpha level has been lowered by the number of groups tested. Therefore, this pairwise comparison is a conservative test of relative mean differences between groups. These analyses allowed for direct comparisons of the measures of variance for each taxon and both sexes. Strong support for the main hypotheses (that ecological versatility is positively correlated with increased phenotypic variation) would feature a pattern of results which include 1) significant differences in measures of variance observed between study pairs, 2) versatilist species (H. sapiens, P. hamadryas, M. fascicularis) consistently exhibit higher means of their measures of variance than their less ecologically versatile pair partners (P. troglodytes, T. gelada, M. nemestrina), and 3) modern humans consistently exhibit more variation than other study species. Results First, I report patterns of variation between species pairs, and between anatomic regions, for all study species using three measures of variation (sample variation, standard deviation, and coefficient of variation). Summations and means of measures of variance are presented in Table 3 (Dentition) and Table 4 (Crania); these are reported within species as pooled sex values, and as sex separate values. All measures of variance are listed by individual measurement within species in Appendix C. To illustrate the effect of absolute size, unadjusted data is also reported. To determine if sample size is affects patterns of variation, regressions on sample size were performed. Next, to visually 18 assess variation by species and among anatomic regions, scatter plots (Figs. 1-6) produced by principal components analysis are reported on cranial and dental data, presented as both pooled and single-sex values. Eigenvalues for each PCA are reported in text. Finally, generalized linear models (GLMs) were performed on all study taxa to determine if the measures of variance for each taxon are significantly different from each other. Reported here are the results of thirty-six GLMs (including two anatomic regions, three sex classes, and six measures of variance), shown by compiled p-values (Table 5), and highlighted results in Figure 7. Results for all GLMs (with box plots) are available in Appendix D. Measures of Variation Tables 3 and 4 report the means and sums of each measure of variation. These measures are themselves compelling estimates of how much variation is within each species while also observing a number of potentially confounding factors: the effect of absolute body size on variation, sexual dimorphism, and the differing values between the statistical measures of variation. For example, across species it is observable that cranial samples (Table 4) vary more than do dental samples (Table 3). Further, all measures of variation are smaller when performed on data transformed by the geometric mean to control for absolute body size. 19 Table 3. Summations and averages of measures of variance in molar traits, by species/sex1 Unadjusted, reported in mm Adjusted by geometric mean2 Sample Standard Coefficient of Sample Standard Coefficient of Variance Deviation Variation Variance Deviation Variation Taxon Sex N Sum Mean Sum Mean Sum Mean Sum Mean Sum Mean Sum Mean H. s. P3 42 8.571 0.714 9.933 0.828 92.195 7.683 0.030 0.002 0.580 0.048 58.219 4.852 F 20 8.188 0.682 9.723 0.810 92.943 7.745 0.034 0.003 0.597 0.050 60.184 5.015 M 22 7.629 0.636 9.190 0.766 83.332 6.944 0.026 0.002 0.543 0.045 54.279 4.523 P. t. P 86 6.368 0.531 8.584 0.715 80.968 6.747 0.024 0.002 0.527 0.044 52.815 4.401 F 50 5.351 0.446 7.855 0.655 75.111 6.259 0.024 0.002 0.529 0.044 53.055 4.421 M 36 6.864 0.572 8.931 0.744 82.615 6.885 0.022 0.002 0.508 0.042 50.858 4.238 P. h. P 380 18.373 1.531 14.414 1.201 127.923 10.660 0.036 0.003 0.626 0.052 60.917 5.076 F 140 17.793 1.483 14.122 1.177 132.394 11.033 0.034 0.003 0.613 0.051 59.424 4.952 M 240 13.868 1.156 12.422 1.035 105.999 8.833 0.035 0.003 0.615 0.051 60.047 5.004 T. g. P 57 7.984 0.665 9.426 0.785 84.673 7.056 0.035 0.003 0.615 0.051 59.620 4.968 F 18 3.547 0.296 6.316 0.526 61.774 5.148 0.047 0.004 0.683 0.057 66.278 5.523 M 39 6.138 0.511 8.287 0.691 72.565 6.047 0.028 0.002 0.556 0.046 53.910 4.492 M. f. P 61 3.386 0.282 6.181 0.515 96.216 8.018 0.022 0.002 0.479 0.040 46.641 3.887 F 29 3.003 0.250 5.793 0.483 93.868 7.822 0.024 0.002 0.494 0.041 47.895 3.991 M 32 2.347 0.196 5.192 0.433 78.424 6.535 0.018 0.002 0.447 0.037 43.860 3.655 M. n. P 49 4.119 0.343 6.728 0.561 82.184 6.849 0.020 0.002 0.468 0.039 45.789 3.816 F 23 4.192 0.349 6.763 0.564 85.207 7.101 0.022 0.002 0.476 0.040 46.680 3.890 M 26 2.869 0.239 5.641 0.470 67.470 5.622 0.017 0.001 0.439 0.037 43.115 3.593 1Summations and averages are pooled totals for all twelve molar traits (measures of variance by trait in Appendix C). 2Scaled data has been adjusted to correct for size, where adjusted data is “trait/geometric mean of individual=scaled trait”. 3The designation “P” represents pooled sex samples. 20 Table 4. Summations and averages of measures of variance in cranial traits, by species/sex1 Unadjusted, reported in mm Adjusted by geometric mean2 Standard Coefficient of Sample Standard Coefficient of Sample Variance Deviation Variation Variance Deviation Variation Taxon Sex n Sum Mean Sum Mean Sum Mean Sum Mean Sum Mean Sum Mean H. s. P3 2524 518.573 32.411 85.030 5.314 100.265 6.267 0.044 0.003 0.786 0.049 76.939 4.809 F 1156 387.252 24.203 73.913 4.620 91.458 5.716 0.043 0.003 0.774 0.048 76.175 4.761 M 1368 441.073 27.567 78.815 4.926 92.141 5.759 0.044 0.003 0.782 0.049 76.246 4.765 P. t. P 193 1569.504 98.094 136.856 8.554 194.534 12.158 0.133 0.008 1.312 0.082 133.446 8.340 F 103 1249.089 78.068 123.306 7.707 178.282 11.143 0.118 0.007 1.238 0.077 125.224 7.826 M 90 1941.103 121.319 150.634 9.415 210.898 13.181 0.151 0.009 1.387 0.087 141.672 8.854 P. h. P 511 1560.338 97.521 121.717 7.607 171.577 10.724 0.169 0.011 1.332 0.083 118.140 7.384 F 175 605.619 37.851 79.832 4.989 130.154 8.135 0.102 0.006 1.095 0.068 100.675 6.292 M 336 1018.579 63.661 101.214 6.326 142.017 8.876 0.128 0.008 1.200 0.075 108.212 6.763 T. g. P 42 574.628 35.914 79.658 4.979 130.001 8.125 0.071 0.004 0.913 0.057 84.362 5.273 F 13 159.125 9.945 44.543 2.784 88.289 5.518 0.041 0.003 0.729 0.046 69.200 4.325 M 29 206.953 12.935 50.610 3.163 88.839 5.552 0.049 0.003 0.799 0.050 78.284 4.893 M. f. P 243 312.605 19.538 60.777 3.799 145.951 9.122 0.087 0.005 1.062 0.066 109.309 6.832 F 96 151.484 9.468 44.216 2.764 124.159 7.760 0.072 0.005 0.983 0.061 106.321 6.645 M 147 210.422 13.151 51.368 3.210 124.603 7.788 0.070 0.004 0.965 0.060 100.717 6.295 M. n. P 18 766.260 47.891 91.607 5.725 170.510 10.657 0.107 0.007 1.084 0.068 102.252 6.391 F 8 236.509 14.782 55.829 3.489 129.722 8.108 0.044 0.003 0.760 0.048 85.928 5.371 M 10 614.956 38.435 82.121 5.133 145.505 9.094 0.101 0.006 1.038 0.065 94.350 5.897 1Summations and averages are pooled totals for all sixteen cranial traits (measures of variance by trait in Appendix C). 2Scaled data has been adjusted to correct for size, where adjusted data is “trait/geometric mean of individual=scaled trait”. 3The designation “P” represents pooled sex samples. 21 To determine if sample size was a contributing factor to overall of patterns of variation across taxa, regressions were performed in MS Excel on sample size (n) per species/sex group as compared to the summed CV statistic for each. Across this study, sample sizes of species/sex groups range from 8 (M. nemestrina female dentition) to 2524 (pooled sex modern human crania). All sample sizes used in these analyses are reported in Table 1 (Dentition) and Table 2 (Crania). Among molars, unscaled total variance had a significant correlation with sample size (p=0.00(a=0.05); R2=0.55) but scaled molar total variance did not (p=0.11; R2=0.15). Cranial total variance did not significantly correlate with sample size in either unscaled (p=0.10(a=0.05); R2=0.15) or scaled data (p=0.13; R2=0.13). In each sample, an individual is represented by either 16 cranial measures, or 12 dental measures; thus, even the smallest sample size analyzed (M. nemestrina female dentition) contains 96 data points. Concerning analyses of variation, scholars have remarked that although no lowest threshold of sample size seems to exist, sets below 20 datum points tend to behave more erratically (Gilbert and Grine 2010; Keppel 1993). Thus, these considerations are sufficient for determining the samples comparable despite unequal sample sizes. Among molars, sample size was a significant factor in sample variation (as measured by summed sample variance per species/sex) for unscaled data (p=0.04 (a=0.05); R2=0.36), but the relationship disappeared and among scaled data (p=0.19; R2=0.17). Among cranial measures, neither unscaled (p=0.18 (a=0.05); R2=0.17) nor scaled data (p=0.81 (a=0.05); R2=0.01) was correlated with body size. Although the molar variation in general seems to in some part be correlated with overall size, cranial data does not indicate a clear relationship between variation and size. This is likely due to the complexity of cranial shapes, where these shapes are more responsible for variation in the sample than absolute size. In both regions, however, these 22 analyses indicate that the scaling procedure used here is sufficient to adjust for variation between species/sex groups due to absolute scale in both cranial and dental data sets. Principal Components Analyses To visualize overall variation in these samples, scatter plots from principle components analyses (PCAs) are included for cranial (Figures 1-3) and dental (Figures 4-6) data, with 95% confidence ellipses. PCAs highlight the amount of variation in a sample without assumptions of the source of the variation, and therefore, are informative for comparatively assessing the entire study sample. These data represent complete measurement sets for each individual, which have been scaled for body size by transforming the data by the geometric mean, within each study species. Among dental samples (Figure 1; n=511), PC 1 explained 78.35% of the variation (Eigenvalue 0.066), while PC 2 explained only 6.93% of the variation (Eigenvalue 0.006). This result indicates that the majority of the variation is explained by PC1, and that source is likely the sex/species categories. Figures 2 and 3 show the single sex PCAs, and here, it is discernable that although the shapes of the ellipses differ, their respective elliptical areas appear to be similarly sized, especially among the monkey taxa. Among hominoids, it does appear plausible that humans (in blue for all PCA figures) may be more dentally variable than Pan troglodytes, particularly among males (Figure 3). 23 Figure 1: PCA Scatter Plot, Dental Key Homo sapiens Blue Pan troglodytes Yellow Papio hamadryas Red Theropithecus gelada Green Macaca fascicularis Orange Macaca nemestrina Purple Females Males 24 Figure 2: PCA Scatter Plot, Dental, Females only Key Homo sapiens Blue Pan troglodytes Yellow Papio hamadryas Red Theropithecus gelada Green Macaca fascicularis Orange Macaca nemestrina Purple Females Males 25 Figure 3: PCA Scatter Plot, Dental, Males only Key Homo sapiens Blue Pan troglodytes Yellow Papio hamadryas Red Theropithecus gelada Green Macaca fascicularis Orange Macaca nemestrina Purple Females Males 26 Figure 4: PCA Scatter Plot, Cranial Key Homo sapiens Blue Pan troglodytes Yellow Papio hamadryas Red Theropithecus gelada Green Macaca fascicularis Orange Macaca nemestrina Purple Females Males 27 Figure 5: PCA Scatter Plot, Cranial, Females only Key Homo sapiens Blue Pan troglodytes Yellow Papio hamadryas Red Theropithecus gelada Green Macaca fascicularis Orange Macaca nemestrina Purple Females Males 28 Figure 6: PCA Scatter Plot, Cranial, Males only Key Homo sapiens Blue Pan troglodytes Yellow Papio hamadryas Red Theropithecus gelada Green Macaca fascicularis Orange Macaca nemestrina Purple Females Males 29 Within all cranial samples (Figure 4; n=3429), PC 1 explained 87.14% of the variation (Eigenvalue 0.473), while PC 2 explained only 4.31% of the variation (Eigenvalue 0.023). This result indicates that the overwhelming majority of the variation is explained by the sex/species categories; a stronger association than among the dental data. Figures 5 and 6 show single sex scatter plots for all cranial variables. Here, it is easier to discern that while the shapes of the ellipse per taxon are not equal, their respective areas are similar, indicating that the amount of variation across taxa is similar. Combined, these analyses suggest several important factors. First, cranial and dental data are likely to return differing results on the question of sample variation; humans appear more dentally variable, but less cranially variable, than Pan troglodytes, for example. Second, species/sex categories explain the majority of variation. This was expected, and therefore species pairs chosen to be similar to each other in phylogeny and body size remain the most directly informative comparisons. Third, and most importantly, after absolute size and sexual dimorphism are minimized within samples, levels of variation appear similar between taxa. This pattern does not appear to support our main hypotheses that ecologically versatile species are more variable. Generalized Linear Models Generalized linear models (GLM) were performed on all study taxa simultaneously to determine if the measures of variance for each taxon are significantly different from each other, regardless of pairings; Table 5 reports the results (p-values) of the GLM procedures. 30 Table 5: Measures of Variance among Anatomic Regions, Sex Categories Results of Generalized Linear Models (a = 0.05) Samp Var Samp Var Stan Dev Stan Dev Coef Var Coef Var Group Unadj. data Adj. data Unadj. data Adj. data Unadj. data Adj. data Pooled, 0.04141 0.2039 0.0216*2 0.1546 0.0045* 0.1017 Cranial Female, 0.0002* 0.0305 <.0001* 0.0153 0.0034* 0.1135 Cranial Male, 0.0005* 0.0723 <.0001* 0.0397 <.0001* 0.0322* Cranial Pooled, <.0001* 0.1615 <.0001* 0.092 <.0001* 0.0044* Dental Female, <.0001* 0.1095 <.0001* 0.1909 <.0001* 0.0949 Dental Male, <.0001* 0.041 <.0001* 0.0436 <.0001* 0.0004* Dental 1Significant GLM results are in bold type. 2Significant differences detected within pairwise comparison groupings are marked with an asterisk. Significant results (a = 0.05) are in bold; bolded p-values with asterisks are those GLM results which also had significant groupings within the pairwise comparisons. Measures of variance on unadjusted data are all significant; this is expected, because absolute body size is a large source of variation. Further, all but one test on unadjusted data also shows significant differences between groups. Although many GLMs detected significant differences among taxa, pairwise comparisons show meaningful distance between groupings to be much rarer. All box plots resultant from GLM procedures, and their groupings within the pairwise comparison, are available in Appendix D. Of the eighteen GLM results on adjusted data, only three show significant groupings within the pairwise comparisons, and all are under the measure coefficient of variance (Table 5). The sample groups are ‘male crania’, where Pan troglodytes has a significantly higher mean than modern humans (HS), and the sample groups ‘pooled dental’ and ‘male dental’, where Papio hamadryas cannot be distinguished from most other taxa. Figure 7 displays the box-plot results of the GLM procedures, and their pairwise comparison groupings, for these three analyses. 31 32 Boxplots derived from the GLM procedures show a visual display of the variation between all six taxa (Figure 7). The results shown here are the overall most informative ones from these procedures, because of two factors. First, the measure of variance under analyses (CV: the coefficient of variation) is the most robust measure in use here because this statistic weighs the standard deviation by the mean of that sample. Second, these data have been adjusted by the geometric mean to remove the influence of absolute size. Groupings based on pairwise comparisons are also included here, showing the significant differences between taxa within a sample. These three results summarized the inconsistency of the entire dataset with regard to the hypothesis that more ecologically versatile species are more variable than less versatile species; Pan troglodytes has the most variable cranial data, while Papio hamadryas displays the most variation in dental data. Modern humans are not consistently distinguishable by measures of variance from other taxa. Discussion Standing phenotypic variation is a characteristic of populations which can inform studies of adaptation (Yablokov 1974). Measuring standing phenotypic variation in a population is a relatively easy task. However, accurately anticipating and accounting for known sources of variation is difficult, and essential, to avoiding false positives. Depending on the inquiry, known sources of variation may need to be assessed. Here, the goal was to assess if phenotypic variation is greater in ecologically versatile catarrhines, and therefore many steps were taken to ensure analyses were accurately summarizing population variation trends. Even after controlling for known sources of variation, however, the effects of anatomic region and cranial shape were both important 33 contributing factors. It is plausible that molar and cranial samples behave differently enough as to be incomparable across regions. Molar variation tended to be an order of magnitude smaller than cranial variation across the study population; this is an interesting result for comparing variance between regions but confounding when discerning differences between taxa. Confounding factors are also present with regard to cranial shape, where differing rates of sexual dimorphism can falsely inflate patterns of variation between taxa. These effects were removed in the present study were hypothesis testing required, but that is not possible for many other studies where demographic information is not known. Considerations of sample size and absolute body size affecting the variation present in a sample have likely been adequately addressed for the purposes of this analysis. Sample sizes in both anatomical regions are sufficiently large to not effect variation in any significant way. Sexual dimorphism can be controlled within analyses by separating sexes where relevant. Absolute body size does impact variation, in that bigger bodies have more variance relative to their size, but once body sizes are scaled across taxa that effect is significantly diminished. Finally, it should be noted that anatomic regions do display differences in variance, regardless of other confounding factors. Across taxa and measures of variance, molars tend to vary less than the cranium. This was expected, given supporting literature on craniodental variation reported in relevant taxa (Aiello and Wood 1994; Delson 2000). Results presented here do not show support for the hypothesis that more ecologically versatile primate species exhibit more phenotypic variation within craniodental features. The measures of variance (Tables 3, 4) and PCA scatterplots (Figs. 34 1-6) indicate the weakness of any variation pattern relative to ecological versatility. Versatilist species are not easily discernible from less ecologically versatile species. For example, among baboons, the highland restricted Theropithecus is comparatively variable with the widespread and dietarily diverse Papio hamadryas. GLM procedures show that P. hamadryas does display slightly more variation than T. gelada, but this result was not consistent across sexes or anatomic regions (Table 4, Figure 7). If ecological versatility were strongly associated with phenotypic variation, these results should have P. hamadryas far outranking Theropithecus, if for no other reason than standing genetic diversity. Further, all analyses reveal that modern H. sapiens are arguably less variable than chimpanzees. PCA scatter plots (Figures 1-6) help visualize modern human variation relative to other species and indicate that humans may indeed be the least variable sample in this study. GLM procedures confirm any ambiguity that modern humans do not display more variation than Pan troglodytes. One possible conflating issue is that while P. troglodytes’ habitat range is significantly smaller than that of H. sapiens, there is evidence that chimpanzee genetic diversity may exceed that of modern humans (Stone et al 2001; Deinard and Kidd 1999). However, since higher genetic diversity in Papio hamadryas (as evidenced by existence of multiple subspecies) than in Theropithecus gelada did not correlate with increased phenotypic variation, assuming this is the cause of difference between modern humans and chimpanzees should be met with caution. Again, given the amount of difference in ecological versatility between modern humans and chimpanzees, it would be expected by the main hypothesis here that modern humans were easily more variable than chimpanzees. This is not supported in these analyses. 35 Conclusion Variation is the raw material on which selective pressures act (Darwin 1859). Therefore, variability, a measure of population variation can be indictive of selective pressures; these two characteristics (population variability and selective pressure) are related (Yablokov 1974). Some scholars argue variability itself is a characteristic that can be altered as part of an adaptive strategy, allowing populations to display a narrow or wide range of phenotypic (or genotypic) traits simultaneously (Grove 2014; Lande 2009; Potts 1998a; Vrba 1992). There may be an advantage for a diverse population in the face of environmental diversity or change (Turley and Frost 2018; Antón, Potts, and Aiello 2014; Borg and Channon 2012; Kuzawa and Bragg 2012; Davidson, Jennions, and Nicotra 2011; Bell 2010; Ash and Gallop 2007). The main hypothesis of this paper, that ecological versatility positively correlates with phenotypic variation, was not supported among craniodental features of selected extant catarrhine primates. Craniodental features were chosen because a) they are more frequent in museum collections and public databases and b) they are known to be more phenotypically conserved than postcranial material. However, postcranial features (particularly of the long bones) are known to be more developmentally plastic than craniodental features (Ruff et al 2019; Trinkhaus, Churchill, and Ruff 1994; DeRousseau and Reichs 1987). Developmental plasticity may be a more active buffering process to combat environmental flux than standing phenotypic variation in adults (Pfenning et al 2010; Jablonka and Lamb 2004; West Eberhard 2003; Lande and Shannon 1996). If so, this effect may present in postcranial elements more readily than craniodental elements, 36 due to the duration and nature of long bone growth (Cunningham, Scheuer, and Black 2016). Known sources of variation in populations, which do not relate directly to ecological versatility, include body size, sex, sexual dimorphism, and age of the individual, along with the anatomic region were under examination. In this study, specimens were only included if these variables were known, thus allowing them to be removed when necessary for hypothesis testing. However, in many settings, such as studies of fossil assemblages, these demographic variables are not always known, or knowable. Further, sample sizes are often much smaller, which could artificially increase sample variance estimates (Sokal and Rohlf 2012). Given the relative weakness of the correlation between ecological versatility and phenotypic variation under known conditions, it would require careful vetting of data to witness the pattern at all. Yet, it is the act of reconstructing past environments which can be most informative of evolutionary history and therefore should be combined with extant data to compare demographic expectations. 37 CHAPTER III: POSTCRANIAL VARIATION AND ECOLOGICAL VERSATILITY IN SELECTED CATARRHINE PRIMATES Introduction Exposure to fluctuating environments may be correlated to an increase in population-level phenotypic and/or genetic variation (Antón, Potts, and Aiello 2014; Lande 2014; Potts 2013, 2012; Kusell and Leiber 2005; Lande and Shannon 1996). Such a correlation has been advanced for decades; for example, Yablokov (1974) argues that standing phenotypic variation - the total amount of variation in metric characteristics of the adult phenotype - in mammalian populations can indicate the amount and directionality of selective pressures. A number of factors determine the amount of standing variation within a population, including genetic variation, limb use or disuse, and nutritional status (Schlichting and Pigliucci 1998; Yablokov 1974; Simpson 1944). A population responding to somewhat predictable, yet variable environmental fluctuations should exhibit increased intra-taxon diversity as selective pressures become less unidirectional (Lande 2014; Pfenning et al 2010; Kussell and Leiber 2005; Lachmann and Jablonka 1996). In rapidly changing environments, or where a single breeding population's range covers a diverse array of habitats, there may be a selective advantage to maintaining polytypic traits (Grove 2014; Potts 2012; Davidson, Jennions, and Nicotra 2011; Lande and Shannon 1996; Levins 1968). Populations with more polytypic traits, more standing variation, or both, may be able to buffer individuals from the effects of the environment (Turley and Frost 2018; Sanchez and Schoch 2013; Kuzawa and Bragg 38 2012; Potts 1998; Levins 1968). In other words, more phenotypic variation can be the result of, and potentially the adaptive response to, a fluctuating environment. The idea that ecological versatility positively correlates with increased phenotypic variation has not yet been directly tested in extant primates. In order to examine the relationship between ecological versatility and phenotypic variation among extant nonhuman primates, catarrhines are ideal because they exhibit a range of ecological versatility. For example, almost 70% of all primates today are determined to be “Near Threatened with Extinction” in the wild, or worse; the IUCN recognizes four categories approaching complete extinction (IUCN 2018). This is because most living primate species are arboreal, and travel in groups restricted to increasingly fragmented forest habitats (IUCN 2018; Mittermeier 1988). Some species do have widespread populations, occurring in both arboreal and terrestrial environments, and consuming variable diets that are often supplemented with cultivated or manufactured foods (IUCN 2018; Rowe and Myers 2016; see DeRousseau and Reichs 1987). The relative success of these species may reflect enhanced tolerance to environmental fluctuation (see Hill and Winder 2019 for operationalizing this in the study of baboons). The aim of this project is to test the hypothesis that more ecologically versatile species will exhibit greater phenotypic variation, as measured in skeletal variation. Following Potts' (1998a) concept of versatilist traits, for the purposes of this analysis ecological versatility is defined as a suite of features including: 1) dietary breadth, 2) widespread geographic distribution, and 3) occupation of heterogeneous habitats. In Chapter One, the hypothesis that ecological versatility and phenotypic variation are positively associated was tested using cranial and dental measures; here, the same 39 question is posed to postcranial samples. In each of three pairs of catarrhine species (Homo sapiens and Pan troglodytes, Papio hamadryas and Theropithecus gelada, Macaca fascicularis and Macaca nemestrina), I compare the putatively more ecologically versatile species with a closely related, but less ecologically versatile species. Background The set of phenotypes which can be produced by a genotype exposed to differing environmental conditions during growth is called the developmental reaction norm or DRN (Schlichting and Pigliucci 1998). Under fluctuating environmental conditions, expanding DRNs may be more advantageous than changes in protein-coding genes (Kelley, Panhui, and Stoehr 2012; Beldade, Mateus, and Keller 2011; Pigliucci and Müller 2010; Müller 2007; Pigliucci 2001), which would result in greater variation in adult body shapes and sizes. Jablonka and Lamb (2014) discuss a synthesis of evolutionary perspectives that focus on the multi-dimensional reality of inheritance, including intergenerational models of learned behavior (such as human language) accompanied by physiological change. They attempt to resolve the unproductive (and false) dichotomy that the source of inherited information must be either genetic or environmental. For example, among primates deemed ‘adaptable’ (a group that largely coincides with those defined by the IUCN as ‘least threatened’, and in some instances ‘invasive’) a shared trait is the occupation of diverse habitats. When adjusting to novel, unpredictably fluctuating, or patchy environments, organisms employ both behavioral and physiological strategies 40 including changes in immune-response, dietary preference, and substrate use; for example, see Stewart and Stringer’s (2012) study on the use of refugia during periods of climatic flux in human evolution, or Parsons’ (1983) book on strategies of colonizing species. These strategies could result in long-term phenotypic change; especially if, for example, the novel environment is introduced during the organism’s developmental stages (Turley and Frost 2018; Turley, Simons, and Frost 2018; West Eberhard 2003; Lachmann and Jablonka 1996). These modes of inheritance include learned behaviors (such as dietary preference and acquisition) that juveniles receive from adults, and in some cases, reiterative physiological responses (Jablonka and Lamb 2014; West- Eberhard 2005, 2003). Given that accumulated variation may be the result of both genetic (regulatory or protein coding, time allowing) and environmental inheritance when an organism experiences fluctuating environments, it is reasonable to anticipate that primates exposed to (either developmentally or evolutionarily) fluctuating environments on a consistent basis should display more phenotypic variation, when examined as a group, than those in more stable, specialized niches (Lande 2014, 2009; Stoessel, Kilbourne, and Fischer 2013; Pfenning et al 2010; Lande and Shannon 1996). Kuzawa and Bragg (2012) lay out expectations under which phenotypic, especially developmental, plasticity could facilitate genetic evolution. First, a population moves into a novel environment. Then, plasticity facilitates an improved “fit” between phenotype and environment within the lifetime of an organism. Over subsequent generations, Kuzawa and Bragg argue, natural selection acts on the genetic architecture of the newly expressed trait to improve on either the plasticity of the phenotype or the efficiency of the new phenotype. These expectations of developmental plasticity fall in 41 line with other hypotheses about evolution in changing environments (Turley and Frost 2018; Antón et al 2016; Forsman 2015; Antón and Snodgrass 2012; West-Eberhard 2005, 2003, 1989, 1986; Potts 1998; Lachmann and Jablonka 1996; Matsuda 1987; Parsons 1983; Levins 1968). Studies in other fields have already engaged this strategy: Davidson and colleagues (2011) tested the idea that invasive plant species would exhibit more phenotypic plasticity. Comparing several lines of morphological variation during growth, they found that invasive species were frequently more plastic than noninvasive species. However, heightened developmental plasticity wasn’t always associated with a measurable fitness benefit, and less plastic species maintained greater fitness homoestasis in resource strapped environments (Davidson, Jennions, and Nicotra 2011). Similarly, a 2013 study by Stoessel, Kilbourne, and Fischer surveyed 236 avian species for correlative patterns between morphological variation and what they call ‘ecological plasticity’. They found that while a few traits did exhibit increased variation with more ecological plastic species, such as femoral length, they concluded these traits could not clearly be associated with ecology to the exclusion of limb function (Stoessel, Kilbourne, and Fischer 2013). Postcranial long bones may be particularly informative skeletal elements, because their long postnatal growth period can reveal the consequences of a fluctuating environment in the adult phenotype (Sanchez and Schoch 2013; Trinkhaus, Churchill, and Ruff 1994; DeRouseeau and Reichs 1987). Many dimensions of postcranial bones are subject to environmental pressures, both during periods of growth and beyond (Ruff et al 2019; Turley and Frost 2018; Cunningham, Scheuer, and Black 2016; White, Black, and Folkens 2011). Maximum lengths of long bones are not achieved until adulthood, 42 when the epiphyseal growth plate is fused to the diaphysis (Cunningham, Scheuer, and Black 2016). This period of growth lasts for years in most primates, and therefore long bone lengths can be influenced by changes in physical activity or nutritional status (for example, Ruff et al 2019; DeRousseau and Reichs 1987). These developmental factors ultimately contribute to the overall length and robusticity of long bone lengths in adults; Trinkhaus, Churchill, and Ruff (1994) show that variation in humeral diaphysis dimensions is particularly sensitive to biomechanical loading. Long bone lengths, along with maximum proximal and distal dimensions of the ends, and the area of the articular surfaces have all been shown to correlate strongly with individual body size and substrate (Ruff et al 2019; Eller, Guthrie, and Frost 2012; Delson et al 2000). Enthesial surfaces also vary within populations, as individual use affects these dimensions most strongly (Turley and Frost 2018). Therefore, linear measures of the postcranial long bones are expected to vary more within a population which copes with multiple habitats and varied resource availability (see Turner et al 2016 for long bone dimensional changes in the cercopithecine monkey Chlorocebus). A robust analysis of postcranial dimensions should reveal differences in the amount of intra-taxon variation between species that regularly encounter diverse ecological pressures and those species with more limited ecological versatility. Materials and Methods Study Species To determine if more ecologically versatile species are more phenotypically variable, linear postcranial measurements were obtained for three pairs of extant 43 catarrhine species. As in Chapter One, the species pairs are Homo sapiens and Pan troglodytes, where H. sapiens is the more ecologically versatile species; Papio hamadryas and Theropithecus gelada, where P. hamadryas is the more ecologically versatile species; and finally, Macaca fascicularis and Macaca nemestrina, where M. fascicularis is the more ecologically versatile species. Table 1.1 summarizes their ecological profiles, where putative versatilist species are highlighted in gray; it should be noted this table is reproduced from Chapter 1, where more detail on ecological profiles can be found. Study pairs were assigned for comparability in phylogeny and body size, in addition to ecological profiles. These species were also chosen because of their representation in museum collections, availability of published measurements, and detailed ecological descriptions in the literature. Skeletal Protocol Phenotypic variation in the adult skeleton is documented with a linear measurement protocol of 53 measures, including measurements of the humerus (14), radius (10), femur (17), and tibia (12). Limb bones should reveal information about environmental pressures because as bony elements they have long periods of growth and high cellular growth rates, especially at the epiphyses (Cunningham, Scheuer, and Black 2016). These specific skeletal elements were chosen because they represent two proximal segments of the limb (humerus and femur) and two distal limb segments (radius and tibia), and therefore they reflect the forelimb and hindlimb. Further, they are commonly found in fossil assemblages, at least in fragments. While none of these qualities are under 44 investigation here specifically, the amount of variation encapsulated within these four bones should give a reasonable proximation of the appendicular skeletal variation. The measurement protocol includes linear measures designed to capture the overall size and variation of the element. Maximum lengths of each bone are recorded, along with breadths across distal and proximal ends, and enthesial lengths (muscle attachment sites along the diaphysis). These measures were chosen to capture phenotypic variation of the long bones generally, and include characteristics known to be affected by environmental influence, such as long bone length (Guthrie 2011; Elton 2001). This protocol has the dual goals of ensuring comparability across studies by including traditional measurements and ensuring meaningful biological comparability across taxa by including anatomical landmarks as frequently as possible. Each measurement is cross- referenced with previously utilized skeletal measurement protocols to ensure comparability to previous work (see Appendix E for complete protocol and measurement references). All measures were taken on the left element, if possible, with calipers and/or osteometric boards. Table 1 reports the sample size for each element per species, by sex, with a total of 113 individuals; "P" represents the pooled sex value. A complete list of all specimens, including institutional identification numbers and coder name, is given in Appendix A. Some samples used here were retrieved from public datasets; examples include Terry Collection and PRIMO. 45 Table 1: Study Sample Individuals and Elements Taxon Sex Total N Humerus Radius Femur Tibia Homo sapiens P 18 18 18 18 18 M 9 9 9 9 9 F 9 9 9 9 9 Pan troglodytes P 15 15 15 15 15 M 6 6 6 6 6 F 9 9 9 9 9 Papio P 38 23 33 19 35 hamadryas M 25 15 23 13 24 F 13 8 10 6 11 Theropithecus P 16 13 12 10 12 gelada M 10 8 7 5 7 F 6 5 5 5 5 Macaca P 16 11 12 11 12 fascicularis M 7 5 6 5 6 F 9 6 6 6 6 Macaca P 10 3 10 4 9 nemestrina M 6 2 6 2 5 F 4 1 4 2 4 Sex-split tallies are labeled (P) pooled, (M) male, (F) female; total N represents the number of individuals in the sample; each bony element column tallies the number of elements per species/sex. Other specimens are provided by individual researchers with permission, including data shared by S. Frost, and E. Guthrie. In perfect practice, a complete individual would total 53 measures covering 4 bony elements. However, individuals are sometimes missing elements, or a measurement was not taken due damage or the remaining presence of soft tissue. Missing data is addressed per analytic technique, as warranted, as explained in more detail below. Specimens included under study were determined to be adult by one of two methods a) where possible, associated dental 46 eruption was used to establish adult if the second molar was fully erupted, and b) epiphyseal growth plates were fused, or obliterated. Data Analysis As in Chapter 1, I include three types of analyses to report the variation in the sample. First, I explore the data visually using principal components analyses. Next, I report measures of variance per bony element, per species. Lastly, I conduct analyses of variance to determine if species are significantly different to each other. Principal Components Analyses To explore patterns of variation by taxon and among bony elements, principal component analysis (PCA) was used as an ordination and data reduction technique and performed separately on each bony element in PAST (Hammer et al 2001). PCAs allow for direct comparisons among the variation within subsamples, where 95% confidence ellipses indicate the variation of the subsample using the area (size) of the ellipse. The size of the ellipse represents the largest possible two-dimensional slice through a high dimensional space. Specimens which were missing more than half of their expected data points, or those which did not include any measure of long bone length, were excluded entirely from principal components analyses. Those records which contain large amounts of unavailable data would skew the PCA results significantly, and because lengths are physically larger measures than distal or proximal ends, these measures tend to weigh heavily in the overall PCA. Small amounts of missing data were estimated in PAST using iterative imputation, where missing values are filled with column averages and then 47 regression values for the missing data are computed reiteratively until convergence is reached (Hammer et al 2001). Any subgroup (sex/species group) where the "n" is less than 3 were not grouped with ellipses but instead are reported as individuals. Measures of Variation I report three measures of variation: sample variance (SV), standard deviation (SD), and coefficient of variation (CV) to quantify phenotypic variation for all 53 variables. Measures of variation are reported within each taxon, and bony element, and were performed on both pooled and single sex samples. Postcranial size differences are notable between sexes and among taxa in this study, and therefore the data is presented as raw values and as adjusted by the geometric mean. This adjustment makes variation more comparable across diverse sizes. For each bone, each measurement is divided by the geometric mean for that individual by element, and then three measures of variance of each element are taken from the adjusted data. For individuals with missing data, the geometric mean was calculated using the species/sex average for any missing measurements, to avoid falsely weighting that statistic. These imputed species/sex averages were not used for any other calculations. This process was repeated for each element in each species/sex group where possible; all steps were completed in MS Excel. Data analyses in Chapter One revealed that while adjusting the data with the geometric mean does reduce the variation created by size differences between groups, it does not change the relative scale of variation inherent in the total sample. 48 Analyses of Variation To test the hypothesis that ecologically versatile species are more variable in adult skeletal traits than less versatile species, an ANOVA for unbalanced samples was applied to all six study taxa simultaneously, to determine if the means of the measures of variance for each taxon were different to one another. Tests were performed in SAS: Statistical Analysis Software v9.4 using a generalized linear model procedure with Bonferroni corrections. If the ANOVA showed differences among taxa by producing a significant p- value, then pairwise T-tests with a Bonferroni correction were conducted to test how the taxa ranked relative to each other. These analyses allowed for statistical comparisons between the measures of variance for each taxon. A Bonferroni correction adjusts the threshold of significance for pairwise T-tests by the number of groups being distinguished, because a significant p-value from the generalized ANOVA may not actually signal a difference among groups once the alpha level has been lowered by the number of groups tested. Therefore, this pairwise comparison is a conservative test of relative mean differences between taxa. Each ANOVA procedure with pairwise Bonferroni corrections was repeated for all three measures of variation: sample variance, standard deviation, and coefficient of variation. These measures are reported on both unadjusted and geomean adjusted data, and as both pooled and single sex samples. First, each bony element (humerus, radius, femur, and tibia) was analyzed separately, including all variables for that element (14, 10, 17, and 12, respectively). These analyses give the most information about variation within each skeletal element. However, due to the differing sizes of both samples and measurement sets, these elements alone cannot describe overall skeletal variation. To provide a view across total 49 skeletal variation, ANOVAs were also performed on a standardized set of ten measures each from across all four elements; this set is termed “skeletal, total”. Further, width and length variables across all four elements were compiled and analyzed separately as: "skeletal, lengths" consisting of two length variables per bone; and "skeletal, widths" with eight variables of proximal and distal aspects. These skeletal variables allow the measures to be as standardized as possible across bony elements, where sources of variation (e.g., long bone length, unequal bone measurement sets) are differentially contributing to phenotypic variation. Results Principal Components Analyses A principle components analysis was conducted on the geomean transformed variables for each bony element to reduce and ordinate the data (Table 2). Figures 1-4 show scatter plots of PC1 vs. Table 2: First three eigenvalues of pooled sex PCAs PC2 for the six sampled species, PC Eigenvalue % variance Humerus 1 0.1716 72.783 with sexes pooled for each 2 0.0424795 18.017 3 0.00836758 3.5491 element: humerus, radius, PC Eigenvalue % variance Radius 1 0.90889 91.269 femur, and tibia. Split sex 2 0.0679089 6.8193 3 0.00991483 0.99563 scatter plots, and complete PC Eigenvalue % variance Femur 1 0.75491 84.866 eigenvalues per PCA, are 2 0.0895821 10.071 3 0.00834635 0.93829 Appendix G PC Eigenvalue % variance reported in . Tibia 1 0.777344 96.025 2 0.0114036 1.4087 Figures 1-4, and Table 2, show 3 0.00586926 0.72503 several patterns which are important to note. First, the bony elements do not return the 50 same results. The first principle component of the humeral set (Table 2) explains substantially less variance in the sample than PC1 does in the other three elements. The second notable observation from these plots is that there does seem to be a consistent relationship among some taxa. For example, Papio hamadryas appears to display consistently more variation than Theropithecus gelada, especially in the forelimb. Only in the tibia does P. troglodytes display more variation than H. sapiens, while in the other elements a comparison between the two suggests equivalent levels of variation. Unfortunately, these patterns are difficult to assess in the macaque samples using this method, but they reiterate those found in the measures of variance reported in Table 3. That is, while individual bony elements are not returning consistent results, there is some indication that more versatile species display more variance, especially in the forelimb. The humeral data suggests Homo sapiens display the most variation, while Papio hamadryas has the most radial variation. In the hindlimb, both H. sapiens and M. fascicularis show the most femoral variation, yet in the tibia Pan troglodytes and P. hamadryas appear the most variable taxa. Overall, there is no indication that any one taxon displays consistently more variation across all four elements. It is important to note that individuals missing more than 50% of the variables, or long bone lengths, were excluded entirely from these analyses (see sample sizes reported in Figures 1-4). This is because the iterative imputation method, recommended by PAST for use in principal components analysis with missing data, may overestimate components when too much data is missing (Hammer et al 2001, pg. 98). Therefore, while some data presented in these analyses are estimated, this method should not alter the overall pattern of the results. 51 Figure 1: Humerus, Principal Components Analysis, Pooled Sex Scatter Plot Key Taxon Color N=78 Homo sapiens Blue 18 Pan troglodytes Yellow 14 Papio hamadryas Red 21 Theropithecus gelada Green 13 Macaca fascicularis Orange 9 Macaca nemestrina Purple 3 52 Figure 2: Radius, Principal Components Analysis, Pooled-Sex Scatter Plot Key Taxon Color N=70 Homo sapiens Blue 18 Pan troglodytes Yellow 15 Papio hamadryas Red 18 Theropithecus gelada Green 11 Macaca fascicularis Orange 5 Macaca nemestrina Purple 3 53 Figure 3: Femur, Principal Components Analysis, Pooled-Sex Scatter Plot Key Taxon Color N=74 Homo sapiens Blue 18 Pan troglodytes Yellow 13 Papio hamadryas Red 19 Theropithecus gelada Green 10 Macaca fascicularis Orange 10 Macaca nemestrina Purple 4 54 Figure 4: Tibia, Principal Components Analysis, Pooled-Sex Scatter Plot Key Taxon Color N=73 Homo sapiens Blue 18 Pan troglodytes Yellow 15 Papio hamadryas Red 20 Theropithecus gelada Green 11 Macaca fascicularis Orange 5 Macaca nemestrina Purple 4 55 Small sample sizes, however, impact these analyses, even when it's only in a single group; this is because the data are scaled within the total sample, and therefore a relatively small group may appear widespread while a comparatively large group may appear reduced compared to its actual elliptical area. In these cases, it was prudent to display individual results yet not create an ellipse defining the area of largest variation around taxa with small sample sizes. This technique was applied most commonly to the macaques, so those results should be interpreted with caution. Although PCAs are not statistical tests, nonetheless, these analyses reveal the dimensions of the variation in the sample. Measures of Variation Table 3 includes the summations and averages of the measures of variation for each subsample and for each bony element. Measures of variation for each variable, organized by subsample (species/sex groups) and along with other relevant descriptive statistics are reported in their entirety in Appendix F. Table 3 reports pooled sex values, on data adjusted by the geometric mean only. Single sex sample sizes are likely too small to detect meaningful differences in variance (see Appendix F). While sex is known among all individuals in this dataset, it is an unlikely scenario for a fossil assemblage to have all elements identified to sex; therefore, sexual dimorphism was not considered a factor in these analyses. Table 3 reveals at least two patterns inherent in the data. First, it is notable that the individual bony elements do not return the same results. For example, more versatile species (H. sapiens, P. hamadryas, M. fascicularis) seem to have more variance than less 56 Table 3: Measures of Variation by taxon, from GM adjusted variables with sexes pooled1 Coefficient of Variance Standard Deviation Variance Sum Mean Sum Mean Sum Mean Humerus H. sapiens 0.191815 0.013701 1.19618 0.085441 83.16961 5.940687 P. troglodytes 0.110608 0.007901 0.889762 0.063554 62.29828 4.449877 P. hamadryas 0.136289 0.009735 1.041821 0.074416 82.6925 5.906607 T. gelada 0.064985 0.004642 0.73413 0.052438 61.69253 4.406609 M. fascicularis 0.597974 0.042712 1.785455 0.127533 91.91339 6.565242 M. nemestrina 0.293839 0.020989 1.249145 0.089225 67.58512 4.827509 Radius H. sapiens 0.256547 0.025655 1.093457 0.109346 76.8662 7.68662 P. troglodytes 0.110954 0.011095 0.789952 0.078995 66.62256 6.662256 P. hamadryas 0.303055 0.030305 1.167596 0.11676 81.28334 8.128334 T. gelada 0.066998 0.0067 0.655961 0.065596 66.52284 6.652284 M. fascicularis 0.944723 0.094472 1.844677 0.184468 99.50356 9.950356 M. nemestrina 0.448502 0.04485 1.340161 0.134016 85.96786 8.596786 Femur H. sapiens 0.271337 0.015961 1.491302 0.087724 139.294 8.193764 P. troglodytes 0.262125 0.015419 1.547375 0.091022 128.361 7.550646 P. hamadryas 0.242542 0.014267 1.274161 0.074951 93.60432 5.506137 T. gelada 0.096487 0.005676 0.971539 0.057149 88.29636 5.193904 M. fascicularis 0.375085 0.022064 1.614851 0.094991 120.1283 7.066372 M. nemestrina 0.73372 0.04316 1.967224 0.115719 129.263 7.603706 Tibia H. sapiens 0.228015 0.019001 1.021584 0.085132 70.06744 5.838953 P. troglodytes 0.28752 0.02396 1.134807 0.094567 71.50279 5.958566 P. hamadryas 0.286476 0.023873 1.102742 0.091895 69.32143 5.776786 T. gelada 0.103738 0.008645 0.810797 0.067566 72.3309 6.027575 M. fascicularis 0.510857 0.042571 1.415766 0.11798 81.1298 6.760817 M. nemestrina 0.713206 0.059434 1.655974 0.137998 92.80106 7.733422 1 Reported from geomean-adjusted data. versatile species in the forelimb (humerus and radius), but not necessarily the hindlimb (femur and tibia). Across taxa, the humerus displays the least amount of variation, whereas the radius displays the most. Second, no taxon is easily distinguishable as "most variable". While H. sapiens, for example, displays more variation than P. troglodytes on 57 three of four elements (humerus, radius, and femur), H. sapiens does not display more variation than M. nemestrina across all elements. These statistics are informative, but comparison between them does not constitute a statistical test of the hypothesis and must be supplemented with further investigations. Analyses of Variation To determine if the patterns of variation observed from measures of variance and from the PCAs are significantly different among study taxa, analyses of variance (ANOVA) were performed in SAS. These ANOVAs test the hypothesis of equal variance among groups. If this hypothesis is rejected, then pairwise T-tests with Bonferroni adjusted alpha values were used to test for pairwise differences; this analysis produces more conservative determinations for between group differences. In total, reported here are the results of forty-two ANOVAs performed on taxa with sexes pooled including four skeletal elements and three composite skeletal subsets, each with three measures of variation. The measures of variation are reported based on both unadjusted data, and data adjusted by the geometric mean. Table 4 displays p-values from these analyses, where significant results are bolded with asterisks; highlighted significant results are available in Figures 5-8. Box plots and pairwise tables for all 42 ANOVAs are available in Appendix H. 58 Table 4: Skeletal Element Generalized Linear Models, p-values per measure of variance1 Stan Dev Samp Var Coef Var Adj SD Adj SV Adj CV Humerus 0.5882 0.6265 <.0001* 0.4522 0.1277 0.1475 Radius 0.9768 0.9535 <.0001* 0.5725 0.3124 0.4795 Femur 0.6617 0.7101 <.0001* 0.7469 0.4972 0.3362 Tibia 0.9246 0.8774 <.0001* 0.8750 0.6163 0.7775 Skeletal, Total 0.4586 0.4123 <.0001* 0.1417 0.0169 0.2922 Skeletal, 0.0001* 0.0002* <.0001* <.0001* <.0001* <.0001* Length Skeletal, Width <.0001* <.0001* <.0001* 0.5905 0.7507 0.9112 1Bold type marks significance at a=0.05; asterisks mark significance after Bon. corr. Perhaps the most obvious pattern discernible in Table 4 is that the only measure of variation that produces consistently significant results is the coefficient of variation based on unadjusted data. This is likely due to the nature of the statistic itself, because the coefficient of variation is a ratio of the standard deviation to the arithmetic mean, and therefore is more sensitive to variance due to absolute scale. Once data adjusted for absolute size is introduced, the statistical significance disappears. It is important to note that except for composite length, no element or measure of variance indicates a significant difference in variation among taxa. Highlighted results of the generalized linear models are reported in Figures 5-8; all four figures feature a box plot on the left, and the pairwise rankings on the right. Here, all possible pairwise combinations between taxa are tested, and the rankings table indicates which taxa are significantly different from which, if any. 59 Figure 5 Coefficient of Variation in ‘Skeletal, Total’, Box Plot (left) and Bonferroni Groupings (right) Means with the same letter are not significantly different. Bon Grouping Mean Taxon A 6.9603 M.f. A 6.8391 M.n. B 4.6775 P.h. B 4.5709 H.s. B 4.2675 P.t. C 2.4278 T.g. H.s. P.t. P.h. T.g. M.f. M.n. Taxon 1Data was adjusted by the geometric mean per individual 60 Figure 6 Standard Deviation in ‘Skeletal, Lengths’, Box Plot (left) and Bonferroni Groupings (right)1 Means with the same letter are not significantly diff erent. Bon Grouping Mean Taxon A 0.49187 M.n. A 0.48399 M.f. B 0.31843 P.h. B 0.30302 H.s. C B 0.26022 P.t. C 0.16500 T.g. H.s. P.t. P.h. T.g. M.f. M.n. Taxon 1Data was adjusted by the geometric mean per individual 61 Figure 7 Sample Variation in ‘Skeletal, Lengths’, Box Plot (left) and Bonferroni Groupings (right)1 Means with the same letter are not significantly different. Bon Grouping Mean Taxon A 0.25263 M.n. A 0.24873 M.f. B 0.10584 P.h. B 0.09494 H.s. B 0.07430 P.t. B 0.02871 T.g. H.s. P.t. P.h. T.g. M.f. M.n. Taxon 1Data was adjusted by the geometric mean per individual 62 Figure 8 Coefficient of Variation in ‘Skeletal, Lengths’, Box Plot (left) and Bonferroni Groupings (right)1 Means with the same letter are not significantly different. Bon Grouping Mean Taxon A 6.9603 M.f. A 6.8391 M.n. B 4.6775 P.h. B 4.5709 H.s. B 4.2675 P.t. C 2.4278 T.g. H.s. P.t. P.h. T.g. M.f. M.n. Taxon 1Data was adjusted by the geometric mean per individual 63 The significant results on unadjusted data for the total skeletal composite variable, Figure 5, may indicate why the lengths variable is the only measure showing consistent differences. This figure shows that the macaques are significantly different from the other four species, but not from each other. Likewise, the apes are significantly different from the monkeys, but not from each other. However, in three of four bony elements the baboons do indicate significant differences from one another, where Papio is consistently more variable than Theropithecus. The box plot does not easily indicate the rankings visually, but one can observe the relative scatter among the pairs. Each plot also has a sizable number of outliers. These are the lengths, which vary more than the diameters, (e.g. distal width); this pattern is discernible among the measures of variance reported in Appendix F. These results are clear: the measurements which drive the majority of variation are those that capture the maximum lengths of the long bones. Significant results for "skeletal, length" are reported in Figures 6-8. Again, we can observe that macaques are the most variable, but are not significantly different to each other. Humans and chimpanzees are also not significantly different to one another, but the baboon pair is significantly different where P. hamadryas is more variable. Figures 6-8 show the patterns among taxa, which are also echoed by the total skeletal composite variable results (Figure 5). Theropithecus gelada scores lowest among all taxa, the macaque species score highest, and the ape pair occupy the middle rung. Within study pairs, only the baboons are significantly different from each other. Discussion These results on analyses of variation in postcranial elements revealed several consistent patterns. First, isolated skeletal elements display different patterns of variation 64 from one another; for example, tibiae do not vary as femora do. While this result may seem somewhat obvious, it implies that documenting postcranial variation is heavily influenced by the choice of bony element, the number of elements, and the number of measures that are included in analyses. Second, measures of variation and PCAs suggested that more versatile taxa (H. sapiens, P. hamadryas, and M. fascicularis) may display more postcranial variation, particularly in the forelimb. However, this effect was reduced to non-significance once the data was adjusted for absolute size using the geometric mean. The ANOVAs also initially indicate that forelimbs are more variable, but these results did not rise to the level of statistical significance in any single element once absolute scale was removed. The composite skeletal data sets revealed the source of most variation (within each bone and across the appendicular skeleton) to be the long bone lengths. These length measurements, analyzed alone, revealed the only significant results relevant to the hypothesis: among postcranial variation in long bone lengths, Papio hamadryas was more variable than Theropithecus gelada. The other pairs did not show differences between species. Taken together, these results reveal a number of interesting observations of both biological and methodological relevance. Hypothesis assessment As described in Chapter One, support for the overarching hypothesis of this dissertation (that ecological flexibility correlates with increased phenotypic variation) would feature 1) significant differences in measures of variation among taxa, 2) more ecologically versatile species (H. sapiens, P. hamadryas, M. fascicularis) showing 65 greater variation than less ecologically versatile pair partners (P. troglodytes, T. gelada, M. nemestrina), and 3) modern humans would consistently have higher means of their measures of variance. The central hypothesis of this chapter expects that ecologically flexible species are more postcranially variable than less ecologically flexible species of a similar size and phylogeny. However, the PCA plots suggest no consistent pattern between the taxa (Figures 1-4), with the exception of Papio hamadryas being more variable than Theropithecus gelada. Pooled-sex measures of variation (Sample Variance, Standard Deviation, and the Coefficient of Variance; Table 3) indicated that more versatile species (H. sapiens, P. hamadryas, M. fascicularis) were only more variable in the forelimb, and only when not adjusted for absolute scale. Thus, there was also no consistent pattern evidenced between taxa in the reported measures of variance, except, again, P. hamadryas does appear to display more variation than T. gelada. The composite skeletal ANOVAs reveal that these results are consistent across variables; while the other two species pairs do not consistently display any pattern of variation, the baboon pair does. Interestingly, throughout this study Papio hamadryas is being used sensu lato (e.g. Gilbert et al. 2018; Frost et al. 2003; Szalay and Delson 1979; Jolly and Brett 1973) and therefore includes several subspecies. Two subspecies (P.h. anubis and P.h. ursinus) are represented in the postcranial analyses, while five are present in the craniodental material. Early in these investigations, I considered that the Papio sample would have to be reduced to a single subspecies in order to make an equivalent comparison with Theropithecus gelada. The gelada baboon is more geographically restricted and is the single remaining species from a genus which was much more diverse in the past 66 (Jablonski and Frost 2010; Szalay and Delson 1979). On the other hand, Papio as a genus is widely considered one of the most phenotypically and ecologically diverse extant old world monkeys (Strum 2001; Devore and Washburn 1963; see Harvati et al 2004). Therefore, if ecological flexibility were correlated with phenotypic variability, then we would expect the differences between these two taxa to be substantial. However, analyses of variance have revealed only moderate patterns of difference between the two taxa in all anatomical regions sampled in this dissertation. These results themselves are not the most notable aspect here, but rather why it is that Papio hamadryas (sensu lato) is not obviously and consistently more variable than Theropithcus gelada. No line of analysis performed here returned results indicating that humans are the most variable taxon. In most analyses, the amount of postcranial variation within H. sapiens is moderate, greater than T. gelada, but less than P. hamadryas. The pairwise rankings showed that they were not greater than Pan troglodytes on any measure of variation, and this result is especially robust because as a pair, these taxa had roughly equivalent sample sizes and lacked missing data. Neither macaque species was consistently more variable than the other. Although the macaques appear to have more variation overall, this result is quite likely due to small sample sizes and incomplete datasets. Thus, either these confounding factors obscured meaningful results, or there were no differences between these taxa. Unfortunately, this was especially problematic in this genus (see following subsection). Therefore, any comparisons involving Macaca from this data set should be approached with extreme caution. 67 Overall, this investigation finds little support for any of the central hypotheses. The single study pair with results indicating that a more ecologically versatile species displays more variation postcranially are the baboons. Given the test conditions, further exploration of phenotypic and genotypic variation between Papio and Theropithecus may be informative. Confounding factors The lack of consistent pattern between the taxa observable in the PCA plots (Figures 1-4) suggests that either the small samples, or the disparate number of variables per element, may be influencing patterns of variation, as variance is highly sensitive to differing sample sizes. As this study makes clear, the number and relative magnitudes of individual variables greatly influence sample variation. These datasets include many variables per individual and are large enough to exceed the minimum of 20 data points per taxon, the threshold at which meaningful conclusions about variance can be derived according to Gilbert and Grine (2010). However, differences in number of individuals or variables can influence patterns of variance in samples above that dataset threshold. For example, the humerus may appear less variable than the radius only because the radial dataset contains ten linear measures while the humeral set has fourteen. These inequities were addressed in the composite variables utilized in the ANOVAs, where each skeletal variable had an equal number of measures selected from each bone. Here, reviewable in Figure 5, we learn that once equivalent measures are introduced, and absolute size is accounted for, differences among taxa are absent. This was also true for the composite variable "skeletal, widths" (Coefficient of Variation, adjusted, p=0.9112). 68 Sample sizes are the smallest among macaques (only 36 included in total for analyses reported here) and this may confound patterns of variation. Further, although missing data occurred minimally in some taxa, it was the most prominent in the macaques. Because these factors were true for both species, their results are still fairly comparable to each other, though we must be cautious when comparing them to other taxa. Thus, they were not able to be assessed well in the PCA analyses, and their overall variance was inflated in the pairwise rankings of the ANOVAs. While every effort was made to correct for these factors, some were unavoidable. M. nemestrina, for example, is infrequent among museum collections and frequently have soft tissue remnants, resulting in a higher rate of missing data. It has become obvious to me in the course of this investigation that variance is a statistic that is sensitive to sample size and in the case of the macaques these were significant confounding factors for obtaining meaningful results about postcranial variation. Postcranial Features This postcranial dataset poses some challenges to measuring phenotypic variation compared to the craniodental material considered in Chapter One. Namely, both crania and dentition are more spherical in shape, and, as measured, their linear dimensions do not vary as much between each other in magnitude. In other words, molar widths and molar breadths are roughly the same size. More elongated objects, like long bones, may have dimensions which do vary substantially from one (proximal width of the radius) to the other (length of the radius). In order to reflect true biological variation about postcranial elements, measurements were taken from all dimensions of the bones. From a 69 statistical point of view, however, this technique poses some challenges for exploration of the hypotheses. Because so much variation in the samples was ultimately attributable to long bone lengths, that factor weighed heavily in all analyses. When long bone lengths are examined as a subset, they indicate a limited support for the overall hypothesis; that is, long bone lengths are consistent with the hypothesis that ecologically versatile catarrhines are more variable than less flexible sister taxa (see Figure 8). However, when that factor is removed, or scattered across all elements with other variables, evidence for differences in variation among taxon pairs diminishes. While it is debatable whether long bone lengths qualify as sufficient indicators of postcranial skeletal variation, I argue they do. Certainly, there are other functionally informative aspects of the postcranium whose values will and do vary. However, limb bone lengths contribute a large component of overall body shape and proportions relevant to locomotion (such as human height, or the inter-membranal index). Further, limb lengths are known to vary within populations due to factors such as climate and nutritional status (Allen’s rule; see Ruff 1993). These observations indicate that not only do long bones influence many body processes, but that they are also developmentally plastic in response to the external environment. Developmental plasticity, that is the ability to incorporate environmental input into the adult phenotype during periods of growth to at least some degree, is likely a source of at least some variation for most every phenotypic trait (West-Eberhard 2003; Schlichting and Pigliucci 1998). Traits with long postnatal growth periods are more susceptible to environmental input than others, and these traits may reveal increased variation in the adult if juveniles are encountering varied habitats and substrates (Antón 70 et al 2016; West-Eberhard 1989). Postcranial variation, particularly long bone lengths, may be the strongest indicator of ecological versatility in a population examined in this study. It is notable that Sanchez and Schoch (2013) found that bone histology, rather than bone morphology, revealed patterns of variation correlated to varied habitat use (and evolutionary success) in an extinct lineage of tetrapods. Although long bone length may be a strong indicator, here, the trait remains a single composite variable among many others tested. All other variables tested among the postcranial samples, including 44 variables from bony elements and two other composite skeletal variables, did not indicate consistent differences between study taxa. Further, craniodental material does not support the hypothesis that phenotypic variation in these study taxa are discernible by ecological versatility. It is possible that long bone lengths are singularly informative traits, indicating the result of ecological versatility, but more research should be conducted. Specifically, comparisons of variation in long bone lengths among developmental stages, and across taxa of differing ecological versatility levels, should reveal if long bone lengths increase in variation within more versatile species. Conclusion In this chapter, support for ecological versatility increasing phenotypic variation is moderate at best, given the ambiguity of the results of most variables tested. In general, Papio hamadryas is more variable than Theropithecus gelada, but the macaques and the apes are less consistent. Furthermore, if ecological versatility does affect phenotypic variation, then I expect modern humans and P. hamadryas (sensu lato) to exhibit notably greater variation, perhaps by orders of magnitude. According to these results, human 71 variation is modest compared to that of chimpanzees, and the increase in variation seen in hamadryas over gelada baboons is slight. If ecological flexibility is correlated with increased phenotypic variation in catarrhines, then based on the sample used here that effect is smaller than the impact of sample size and missing data. In other words, the effect is slight enough to be overwhelmed by confounding factors which may be difficult to avoid in normal practice, and impossible to avoid under some conditions such as the fossil record. Obscured patterns and false positives may arise when variance can easily be swayed by a number of factors like sample size, absolute scale, and the anatomical region measured. Fossil assemblages, for example, where associated elements are rare and most are fragmented, may prove difficult to assess in terms of phenotypic variation in a biologically meaningful way. These factors may obscure the reliable detection of a correlation between ecological versatility and phenotypic variation or may instead indicate a pattern where none exists. These ideas will be explored further in the next chapter. Although there are not consistent differences indicated among taxa for any measure of variance on adjusted data, long bone lengths as a single composite variable did reflect increased variation in more ecologically flexible taxa (Table 4). These results suggest that long bone growth may be a fruitful avenue for further investigation. Growth periods can be particularly sensitive to environmental perturbations, in the sense that activity and nutrition in early development likely has a larger impact on the adult phenotype than those same factors do in early adulthood (Antón and Snodgrass 2012; Kuzawa and Bragg 2012; West Eberhard 2003). These effects of developmental plasticity and accommodation may be strongest in the limb bones, relative to other anatomical 72 regions, due to the functional integration of environmental impacts during growth periods (Turley and Frost 2018; Wang 2011). Therefore, long bone lengths may reflect the causal relationship (developmental plasticity) between ecological versatility and increased phenotypic variation, which Antón, Potts, and Aiello (2014) originally posed. This study represents the second phase in a continuing investigation of a central hypothesis: does ecological versatility correspond with increased phenotypic variation in catarrhine primates? The first phase (Chapter 1) focused on craniodental variation. Here, I focused on postcranial variation including the humerus, radius, femur, and tibia. In both instances, similar analyses were conducted to explore the magnitude of variation within the study samples. For the third, and final phase of this investigation, I will take a different approach by modeling fossil assemblage conditions to further evaluate detectable patterns of variance in my samples. 73 CHAPTER IV: MEASURING VARIATION IN FOSSIL HOMININS: HUMAN EVOLUTION, ECOLOGICAL VERSATILITY, AND THE VARIABILITY SELECTION HYPOTHESIS Introduction The variability selection hypothesis (VSH) proposes that the ecological strategy of diversifying resource and habitat use by a species, in response to fluctuating environments, has increased phenotypic variation in early Homo (Antón, Potts, and Aiello 2014). Simply, variability selection can be described as “adaptation to adaptability” (Potts 1998a); specifically, VS is based on paleoecological evidence that species which diversified their diets and the range of habitats that they could exploit in eastern Africa between 2.5-1.5 ma persisted, while more specialized species went extinct (Potts 2012, 2002). VS hypothesizes that the increase in diversity of anatomical and behavioral traits within early eastern African Homo spp., relative to contemporaneous australopiths, is a result of adapting to ecological fluctuations (Potts and Faith 2015; Potts 2013, 2002, 1998a). The hypothesis that a more ecologically versatile primate species may display more phenotypic variation than less ecologically versatile species is a directly testable prediction of VSH, provided adequate samples. Antón, Potts, and Aiello (2014) report the variation in several morphological features to argue that early Homo spp. tend to be more variable than australopith species, but one potential concern with their analysis is that available early hominin sample sizes are too limited. In this chapter, I will evaluate the 74 sample sizes necessary to test for differences in variance between populations using the several of the anatomic characters of Antón, Potts, and Aiello (2014; see Table 1) where I have equivalent skeletal data. Using extant taxa (Homo sapiens and Pan troglodytes) alongside published extinct hominin data (australopiths and early Homo spp.), I compare patterns of skeletal variation within dental and postcranial measures. Directly comparable measures across taxa allow a determination on the sample size threshold for reliably measuring variance among specific skeletal measures; here, molar areas and femoral lengths. Chapters 1 and 2 revealed the contours of standing phenotypic variation between these and other extant taxa in three separate anatomic regions: cranial, dental, and postcranial variation. Factors, such as sexual dimorphism, body size, and phylogeny, which may impact sample variation and obscure comparisons, were minimized or controlled for; not all of these factors are avoidable in fossil samples. Here, permuted samples of increasing size are used to empirically determine sample sizes necessary to estimate phenotypic variation present in these populations using specific measures from of Antón, Potts, and Aiello (2014). The focus of this chapter is not to necessarily evaluate the biological hypotheses offered by VSH, but rather to evaluate the necessary conditions for being able to test the hypothesis in the first place. Background Variability Selection Hypothesis 75 Among hominin evolutionary studies, the relationship between fluctuating environments and phenotype is described in the variability selection (VS) hypothesis, first proposed by Potts in 1996 and refined through a series of papers (Potts and Faith 2015; Antón, Potts, and Aiello 2014; Potts 2013, 2012, 2002, 1998a, 1998b). It is offered as an adaptive framework to explain the origin and subsequent success of Homo, relative to an increasingly variable climate. Paleoecological evidence suggests that early Homo spp. regularly encountered environments in flux, and as such had to diversify its diet, habitat occupation, and social behaviors to cope with novel environmental factors (Antón et al 2016; Potts and Faith 2015; Grove et al 2015; Stewart and Stringer 2012). The result of this selection for environmental versatility is that early Homo spp. display “versatilist” traits, like generalized dentition, larger brain, and more complex material structures such as tools (Potts 1998a; see Borg and Channon 2012 for operationalization of this in social learning modelling). Another proposed outcome of VS is an increase in the range of adult phenotypic variability, facilitated by developmental adjustments to environmental flux during growth periods (Antón et al 2016; Potts and Faith 2015; Antón, Potts, and Aiello 2014; but see Zichello et al 2018). The variability selection hypothesis (VSH) states that Homo is under selection for adaptability, as an evolved response to a variable and unpredictable environment (Potts and Faith 2015; Antón, Potts, and Aiello 2014; Potts 1996, 1998a, 1998b, 2012). Fossil evidence from early Homo and H. erectus in eastern Africa is argued to show increases through time in both phenotypic variation and ecological versatility as compared to contemporaneous australopiths (Antón, Potts, and Aiello 2014; Potts 2012; but see Schroeder et al 2014). Potts (2012,1998a,b) hypothesizes that the increases in body size, 76 brain size, geographic range, and niche diversification are features of Homo that evolved in response to extreme fluctuations in food availability and seasonal predictability. Especially between 2.5 and 1.5 Ma there are an increasing number of oscillating climatic periods, during which time phenotypic variation among early Homo spp. also increases (Potts and Faith 2015; Antón, Potts, and Aiello 2014; Ash and Gallop 2007). Decreasing environmental predictability was likely a pressure, asserts Potts, for hominin populations in eastern Africa throughout the later Miocene through Plio- Pleistocene and would have been an impetus for the use of a wide range of habitats (Antón et al 2016; Antón, Potts, and Aiello 2014; Potts and Faith 2015; Stewart and Stringer 2012). Paleoecological data indicates that seasonal duration, temperature, rainfall, and food availability become increasingly variable and unpredictable from the late Miocene to the recent (see Levin 2015; Stewart and Stringer 2012). Climatic conditions are well documented from multiple lines of evidence such as marine oxygen isotope analysis, oceanic dust records, sedimentology, palynology, paleosol and loess patterning, fossil pollen, and carbon isotope analyses in soils, plant wax, and tooth enamel (e.g. Winder et al 2015; Cerling et al. 2011; Jolly 2009; Bobe 2006; Delson, Tattersall, and Van Couvering 2004; de Menocal 2004; Wynne et al. 2004; Zachos et al. 2001; Reed 1997; see Potts 2012, 1998b and references therein; de Menocal and Bloemendal 1995). When an environment varies so unpredictably that habitats cannot support a particular species, that species can respond in three ways: migrate, broaden the range of responses to the environment, or go extinct (Grove et al 2015; Grove 2011; Potts 1998a; Vrba 1992). In eastern Africa, fossils of early Homo are found in more diverse habitats, 77 were of larger and more varied body sizes, and had a more generalized diet compared to contemporary australopiths (Antón, Potts, and Aiello 2014; Potts 2002, 1998a and references therein). Potts (1998a) proposes that broadening environmental response can be achieved through “versatilist” traits, i.e. ones that support diverse ecological occupation, such as a generalized locomotor strategy, a dietary structure or behavior which could readily allow a shift to newly available foods, a large brain, and mutable social structures (Potts 1998a). Another feasible outcome when responding to environmental fluctuations is to maintain large amounts of phenotypic variation, as Potts and coauthors have argued (Potts and Faith 2015; Antón, Potts, and Aiello 2014; Potts 2012; see Lande 2014, 2009; Davidson, Jennions, and Nicotra 2011; Pfenning et al 2010; Kussell and Leiber 2005). Evidence put forth in support of this idea includes increasing amounts of intrataxon phenotypic variance from early Homo, through H. erectus, peaking at the diversity and large population numbers of anatomically modern humans (for early Homo phenotypic variation, see Pontzer 2012; also Will and Stock 2015 and Schroeder et al 2014). VSH is rarely advanced in concert with anatomical evidence (but see Potts 2002). However, one of the most specific phenotypic predictions of VSH appears in Science (Antón, Potts, and Aiello 2014). Data summarized in their Table 1 presents cranial volumes, body mass estimates, and skeletal metrics which appear to indicate an increase in within-population variation through time, especially for early Homo spp. relative to contemporaneous australopiths. In addition to morphological and paleoclimatic evidence, the authors suggest that versatility on multiple biological levels was favored in the dynamic habitats of our ancestors’, evidenced in part by an increase in phenotypic 78 variation among Homo spp. They further propose these changes were probably not achieved at the genetic level alone, but at least partially through phenotypic and developmental plasticity (Antón et al 2016; Antón, Potts, and Aiello 2014). Phenotypic plasticity as a proposed mechanism for integrating environmental input, therefore correlating environmental flux with increased phenotypic variation, aligns with many other broader hypotheses from across evolutionary biology (Lande 2009; Kussell and Leiber 2005; West Eberhard 2003, 1989; Pigliucci 2001; Schlichting and Pigliucci 1998; Lande and Shannon 1996). Measuring Fossil Variation Measures of variance are highly sensitive to sample size (Sokal and Rolfe 2012; Simpson, Roe, and Lewontin 1960). As this dissertation and other studies have shown, detecting patterns of variance reliably across taxa can require large and robust datasets, which are often lacking in the fossil record (see Gilbert and Grine 2010). Small sample sizes tend to overestimate the variation actually present in the larger population, in the sense that the larger a sample of individuals becomes, the more reliably we can trust statistical inferences drawn from that sample. However, the precise value at which this threshold is reached does not objectively exist, but it is instead a trait of the sample itself (Sokal and Rolfe 2012). Given a known sample, minimal sample size which will reliably return a result can be rather precisely determined; that is, we can describe the error intervals of our statistical estimates, and gauge how large a sample must be as to exceed the threshold at which the estimates of variance converge with the true sample variance value. 79 To determine the sample size threshold at which reliable measures of variation can be detected, permutations are conducted on randomized and increasingly large subsamples until convergence on the true sample variance value is reached. By directly comparing skeletal dimensions (here, femoral length and occlusal surface area of molars) between extinct hominin taxa reported by Antón, Potts, and Aiello (2014), and extant hominoids Pan troglodytes and Homo sapiens, we are able to get a sense of the sample sizes required to reliably measure variance for these anatomic traits. Materials and Methods To assess the sample sizes necessary to detect an increase in phenotypic variation between extinct hominin populations, I use skeletal molar areas and femoral lengths from extant Pan troglodytes and modern Homo sapiens to compare with equivalent measures in fossil hominin samples provided by Antón, Potts, and Aiello (2014). These extant hominoids provide a reasonable comparison to australopith and early Homo spp. populations for the purposes of determining necessary sample sizes for measuring variance in these skeletal traits. Table 1 provides a summary of these samples, while the next subsections provide details on the populations, measurements, and analyses included in this chapter. Sample Populations Table 1 offers a summation of the sample data utilized here, including comparisons of australopiths and early Homo spp. to a similar extant pair of hominoids, modern humans and chimpanzees. Two columns represent the australopith sample 80 (South African Australopithecus africanus and eastern African Australopithecus afarensis) and two represent the early Homo spp. sample (eastern African non-erectus Homo and eastern African early H. erectus); all four columns are derived from Antón, Potts, and Aiello (2014). Table 1: Study Samples of Fossil and Extant Hominoids South East East Africa East Extant Modern Africa Africa non-erectus Africa P. H. A. A. Homo1 early H. troglodytes sapiens africanus1 afarensis1 erectus1 M1 area (mm2) N 6 6 8 2 85 42 Range 41 73 53 28 56 77 Mean 179.5 164.1 179.8 163.0 119.6 118.7 Total Samp.Var. 231.50 689.01 327.55 392.00 154.95 248.22 M1 area (mm2) N 7 16 16 7 75 41 Range 60 73 54 46 47 50 Mean 173.1 164.0 163.1 153.4 108.3 118.4 Total Samp.Var. 425.48 401.31 349.60 397.95 116.34 148.47 M2 area (mm2) N 6 8 10 3 81 41 Range 74 61 93 36 77 81 Mean 221.8 192.4 193.3 164.0 120.8 121.1 Total Samp.Var. 672.17 399.30 642.68 372.00 233.02 236.71 M 22 area (mm ) N 0 19 13 4 79 42 Range – 97 108 28 73 72 Mean – 188.1 204.3 166.0 118.5 117.7 Total Samp.Var. – 956.93 1049.42 516.00 194.60 186.68 Femur length (mm) N 2 3 3 4 13 18 Range 158 101 86 56 62 97 Mean 355.0 346.0 398.0 450.5 289.0 436.2 Total Samp.Var. 12482.00 3181.00 2330.33 675.00 288.98 703.47 1Fossil hominin data reprinted from Anton, Potts, and Aiello 2014; Supplementary materials from this source include original publishing references. Mean area values for A. africanus and all Homo spp. were originally published incorrectly, where molar area means and ranges were inflated by a factor of 10; these values have been adjusted from the original linear measures, with means and sample variation recalculated here. Molar area values have been added for A. afarensis from Kimbel et al 2004; means and sample variance for these values was recalculated by the author. 81 The extinct hominin data is presented as found in from Table 1 in Antón, Potts, and Aiello (2014); individual data points included in these species’ means, and their original published sources, can be found in their Supplementary Materials (Table S2). Major sources of data in (especially for the dental measurements) include Wood’s Fossil Remains of Koobi Fora (1994) with newer Homo data contributed from other sources (Leakey et al 2012, Spoor et al 2007, Rightmire et al 2006); Australopithecus afarensis data is derived from Kimbel et al (2004). These data are based on the most complete members of the labeled taxa and skews some groups to larger or smaller sizes (1470 and 1813 groups, respectively). Extant populations sampled here are original data derived from populations first reported in Chapters 1 and 2 for Pan troglodytes and extant Homo sapiens. This pair of closely related taxa approximate fossil hominin differences in body size, and ecological distinctions between the two have been paralleled to proposed distinctions between Australopiths and early Homo sensu lato (e.g. Grine and Kay 1988; but see Sponheimer et al 2006; Jolly 2001). All specimens included here are adults, with known sex and age; see Table 1 for sample information used in this chapter, see Appendix A for specimen sources. Skeletal Data Skeletal data included in this analysis are taken from two regions sampled in the previous chapters: dental and postcranial. Following Antón, Potts, and Aiello (2014), molar area data is derived from linear caliper measures of the buccolingual and mediolateral maximum distances in millimeters, as described in Appendix B. Molar 82 width dimensions were multiplied together, and the product is presented in millimeters squared. These data include the occlusal molar areas of M1, M2, M1, and M2. Also following Antón, Potts, and Aiello (2014), femoral length data is also caliper derived and is represented by a single linear measure; this measure is defined in protocols listed in Appendix E, as Femur Length 2, #26. Table 1 presents the ranges, means, and the total sample variance on these measures of dental and postcranial material, including the occlusal molar areas of M1, M2, M1, and M2, along with femoral lengths. To match extant data with published fossil hominin data, these data have not been adjusted to compensate for differences in absolute size and are presented, and analyzed, as pooled-sex groups. Ranges are reported as whole numbers, means rounded to the nearest tenth of a millimeter, and total sample variance rounded to the nearest hundredth. Analyses of Sample Size To determine the sample size necessary to reliably estimate population variance within these taxa for these measurements, permutation analyses of increasingly large sample sizes should illustrate the maximal limit for sample variance accuracy within a population (see Gilbert and Grine 2010). Beginning with a sample size of two, a random subsample of n=2 is selected and their sample variance recorded; subsampling variance is repeated 1000 times at each sample size, without replacement. As the sample size is increased (n=3,4,5,etc…), sample variance estimates begin to converge at the total sample variance which is defined per sample. The results will display approximate thresholds in the sample size at which measures of variance become reliable; reliability is 83 determined, here, when 90% of permutation variance estimates fall within 20% of the total sample variation. In other words, these analyses indicate how large a sample must be to reliably return a reasonably accurate measure of variance. Permutations were performed using SAS v9.4 software, using analyses designed to illuminate the relationship between sample size and sample variance (SAS code written by K. McNulty and S. Frost, and was used here with permission). Each trait was analyzed separately, per taxon. These analyses were performed on pooled sex groups and have not been adjusted for absolute body size, to reflect data published by Anton, Potts, and Aiello (2014). From these permutation analyses, Table 2 provides a summary of sample size thresholds where the 95th and 5th percentiles are within 50%, 25%, 20%, and 10% of TSV for any given measure. It should be noted that this author discerns a reasonably reliable estimate of variance at ‘within 20%’ of TSV; Table 2 provides both an illustration of the effects of sample size on variance and a general guide for more (or less) stringent estimate accuracy standards. The permutation analyses presented here do not center on biological expectations, as was the case in the previous two chapters, but rather are aimed at determining the necessary sample size for assessing questions involving variation in these taxa. Results This section begins with a brief discussion of the sample variance reported in Table 1, for all hominoid species. Following, Figures 1-10 present line plots of variance permutations on four different molar areas and femoral length, for both Pan troglodytes 84 and modern Homo sapiens. Sample sizes for study species, and reliable sample size ranges for detecting variance (established as within 20% of the total sample variation), are reported for each measure. Finally, Table 2 reports the reliability of sample variance at various sample sizes across skeletal measures. The reliability of an estimate of variance is defined within 50%, 25%, 20%, and 10% accuracy of the total sample variance for that dataset. Sample Variance Total sample variance is reported for each taxon per trait in Table 1; this measure is equivalent to total sample variance (TSV) reported in variance permutations (Figs. 1- 10), as representing the total variation measured for that sample. Across all four teeth and sampled species, TSVs range from 116.34 to 1049.42. The low end of variation (TSV=116.34) is occupied by P. troglodytes in M1, the high end is East African non- erectus Homo spp., M2 (TSV=1049.42). Though both extant taxa have generally lower TSVs than the extinct samples overall, where the highest TSV values are all among early Homo samples, there is significant overlap. The lower second molars exhibit the widest range of variation among dentition (TSV range=186.89-1049.29), displaying a range which looks more like the femoral data than the other molars. 85 Figure 1: Modern Homo sapiens M1 Area, Sample Variance Permutations 1000 MIN 5% 900 25% 800 50% 75% 700 95% MAX 600 Total Sample Variance (TSV=248.22) 20% Upper Limit 500 20% Lower Limit 400 300 200 100 0 1 6 11 16 21 26 31 36 41 Number of Individuals (Total N=42) East Africa early Within 20% of true Sample Variance, in 90% Homo erectus (N=2) of 1000 randomizations (n range=32-37). East Africa all non-erectus Homo (N=8) 86 Variance Figure 2: Extant Pan troglodytes M1 Area, Sample Variance Permutations 1000 900 MIN 800 5% 25% 50% 700 75% 95% 600 MAX Total Sample Variance (TSV=154.95) 500 20% Upper Limit 20% Lower Limit 400 300 200 100 0 1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 Number of Individuals (Total N=85) South Africa Australopithecus africanus (N=6) Within 20% of true Sample Variance, in 90% of 1000 randomizations (n range=44-47). East Africa Australopithecus afarensis (N=6) 87 Variance Figure 3: Modern Homo sapiens M1 Area, Sample Variance Permutations 1000 MIN 900 5% 25% 800 50% 75% 700 95% MAX 600 Total Sample Variance (TSV=148.46) 20% Upper Limit 500 20% Lower Limit 400 300 200 100 0 1 6 11 16 21 26 31 36 Number of Individuals (Total N=41) East Africa all non-erectus Homo (N=16) Within 20% of true Sample Variance, in 90% of 1000 randomizations (n range=30-32). East Africa early Homo erectus (N=7) 88 Variance Figure 4: Extant Pan troglodytes M1 Area, Sample Variance Permutations 1000 900 MIN 800 5% 25% 700 50% 75% 600 95% MAX 500 Total Sample Variance (TSV=116.34) 400 20% Upper Limit 20% Lower Limit 300 200 100 0 1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 Number of Individuals (Total N=75) South Africa Australopithecus africanus (N=7) Within 20% of true Sample Variance, in 90% of 1000 randomizations (n range=48-51). East Africa Australopithecus afarensis (N=16) 89 Variance Figure 5: Modern Homo sapiens M2 Area, Sample Variance Permutations 1000 MIN 900 5% 25% 800 50% 75% 700 95% MAX 600 Total Sample Variance (TSV=236.73) 20% Upper Limit 500 20% Lower Limit 400 300 200 100 0 1 6 11 16 21 26 31 36 Number of Individuals (Total N=41) East Africa early Homo erectus (N=3) Within 20% of true Sample Variance, in 90% of 1000 East Africa all non-erectus Homo (N=10) randomizations (n range=31-36). 90 Variance Figure 6: Extant Pan troglodytes M2 Area, Sample Variance Permutations 1000 MIN 900 5% 25% 800 50% 700 75% 95% 600 MAX Total Sample Variance (TSV=233.02) 500 20% Upper Limit 20% Lower Limit 400 300 200 100 0 1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 Number of Individuals (Total N=81) East Africa Australopithecus afarensis (N=8) Within 20% of true Sample Variance, in 90% of 1000 randomizations (n range=50-51). South Africa Australopithecus africanus (N=6) 91 Variance Figure 7: Modern Homo sapiens M2 Area, Sample Variance Permutations 1000 MIN 900 5% 25% 800 50% 75% 700 95% MAX 600 Total Sample Variance (TSV=186.70) 20% Upper Limit 500 20% Lower Limit 400 300 200 100 0 1 6 11 16 21 26 31 36 41 Number of Individuals (Total N=42) East Africa all non-erectus Homo (N=13) East Africa early Homo erectus (N=4) Within 20% of true Sample Variance, in 90% of 1000 randomizations (n range=33-37). 92 Variance Figure 8: Extant Pan troglodytes M2 Area, Sample Variance Permutations 1000 900 MIN 5% 800 25% 50% 700 75% 95% 600 MAX Total Sample Variance (TSV=194.60) 500 20% Upper Limit 20% Lower Limit 400 300 200 100 0 1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 Number of Individuals (Total N=79) East Africa Australopithecus afarensis (N=19) Within 20% of true Sample Variance, in 90% of 1000 randomizations (n range=48-52). South Africa Australopithecus africanus (N=0) 93 Variance Figure 9: Modern Homo sapiens Femoral Length, Sample Variance Permutations 1000 900 800 700 600 500 MIN 5% 400 25% 50% 300 75% 95% 200 MAX Total Sample Variance (TSV=703.47) 100 20% Upper Limit 20% Lower Limit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Number of Individuals (Total N=18) East Africa early Homo erectus (N=4) Within 20% of true Sample Variance, in 90% of 1000 randomizations (n range=13-16). East Africa all non-erectus Homo (N=3) 94 Variance Figure 10: Extant Pan troglodytes Femoral Length, Sample Variance Permutations 1000 MIN 900 5% 25% 800 50% 75% 700 95% MAX 600 Total Sample Variance (TSV=288.98) 20% Upper Limit 500 20% Lower Limit 400 300 200 100 0 1 2 3 4 5 6 7 8 9 10 11 12 Number of Individuals (Total N=13) East Africa Australopithecus afarensis (N=3) Within 20% of true Sample Variance, in 90% of 1000 randomizations (n range=10-13). South Africa Australopithecus africanus (N=2) 95 Variance Femoral data displays a wider range of both actual size (mean length range=289- 450.5mm) and range of sample variation than does the molar data. Among femoral lengths, TSVs are high for both australopith samples (South African A. africanus, TSV=12482.00; East African A. afarensis, TSV=3181.00) relative to modern samples (P. troglodytes, TSV=288.98; H. sapiens, TSV=703.47). Among early Homo samples there is a significant difference between species (non erectus Homo spp., TSV=2330.33; H. erectus, TSV=675.00) where values overlap with both australopiths and extant forms. Sample Sizes for Reliably Measuring Variation Permutation analyses were performed separately on extant P. troglodytes and H. sapiens samples for each anatomic trait. Results are presented in Figures 1-10, which display trends in the dispersion of variances calculated for each permutation as subsample size increases. Colored trendlines indicate percentiles of the subsampled variance estimates. These lines converge on TSV as permutation sample size approaches the total sample size. Convergence of percentiles of variance estimates to within 20% of the TSV are denoted, along with sample sizes in comparable hominin samples of the same anatomic trait. Table 2 provides a summary of sample size thresholds where the 95th and 5th percentiles are within 50%, 25%, 20%, and 10% of TSV. It should be noted that this author discerns a reasonably reliable estimate of variance at ‘within 20%’ of TSV; Table 2 provides both an illustration of the effects of sample size on variance and a general guide for more (or less) stringent accuracy standards. In Figure 1, which depicts variance permutations for H. sapiens M1 occlusal area, we can see that convergence between 95% and 5% trendlines reaches 20% of the total sample variance (TSV=248.22) in sample sizes around 32-37 individuals (black arrows 96 and text inset highlight this threshold). This indicates that among this population, a sample size of approximately 35 individuals should reliably estimate TSV. Note that red arrows and text insets within figures indicate sample sizes of comparable hominin samples, early Homo spp. and East African H. erectus. At these sample sizes, n=2 and n=8 respectively, variance estimates are returning results within about 400% of the total sample variance. In Figure 2, a larger sample size (n=85) on the same trait on Pan troglodytes displays a similar pattern to Figure 1. Most variance estimates (90% of randomized subsamples) converge within 20% of total sample variance by about 45 individuals and converge within 10% of total sample variance at a sample size of about 70 individuals (see Table 2). As in these first two analyses, the other three molar area results (Figs. 3-8; Table 2) display a similar pattern, where convergence within 20% of total sample variance among modern humans occurs around a sample size of about 30 individuals, and among chimpanzees at around 40 individuals. Table 2: Estimate Error by Sample Size, in Sample Variance Permutations Sample Size Ranges at Percentile Variance Estimate Total Total Within Within Within Within Sample Sample 50% of 25% of 20% of 10% of Size Variance TSV TSV TSV TSV (TSV) H. sapiens M1 42 248.22 15-19 29-32 32-37 38-40 P. troglodytes M1 85 154.95 11-17 37-38 44-47 68-74 H. sapiens M1 41 148.46 13-15 26-28 30-32 37-39 P. troglodytes M1 75 116.34 14-20 39-40 48-51 64-68 H. sapiens M2 41 236.73 17-19 29-32 31-36 37-40 P. troglodytes M2 81 233.02 16-19 42-43 50-51 68-73 H. sapiens M2 42 186.70 18-19 31-35 33-37 38-41 P. troglodytes M2 79 194.60 13-21 41-42 48-52 66-73 H. sapiens FEML 18 703.48 7-9 12-15 13-16 16-18 P. troglodytes 13 288.98 7-9 10-13 10-13 11-13 FEML 97 Femoral length study samples have significantly smaller sample sizes compared to those for molars, and the variances from permutations reflect this in Figs. 9 and 10. As also visible in Table 2, modern human femoral lengths vary substantially more than any other extant study sample (FEML, TSV=703.48), and the chimpanzee femoral sample has the next highest variance estimate, albeit significantly lower than the modern human sample (P. troglodytes FEML, TSV=288.98). In both species, percentile estimate trendlines converge dramatically at the end of the sample as the degrees of freedom for permutations become more constrained, suggesting these samples may not be large enough to properly estimate the sample size needed for this trait. Extant sample sizes used here (n=18 H. sapiens, n=13 P. troglodytes femora) are significantly larger than the sample sizes for extinct hominoids (n range=2-4; see Figs. 9-10); fossil femoral data are highly unlikely to return reliable estimates of sample variance. Discussion Robust sample sizes are necessary to reliably assess statistical variance (Sokal and Rolfe 2012; Gilbert and Grine 2010). Among extinct hominin molar samples used here, none of the sample sizes are large enough to confidently surpass the ‘within 25%’ threshold of reliability. Even the largest fossil sample size reported (n=19, Australopithecus afarensis M2) will only provide sample variance estimates that are probabilistically within 50% of the TSV of that population, returning an estimate of sample variance likely within 200% of the actual sample variance (see Figure 8). For example, in Table 2 we can see that in Pan troglodytes M2 variance estimates are within 50% at 13-21 individuals, but 48-52 individuals are needed to achieve the ‘within 20% 98 TSV’ threshold. This illustrates the likelihood that the range of estimate error among published fossil hominins reported here exceeds the perceivable differences which may or may not be inherent the broader populations. Differences in variation of this magnitude could be due to differing coping strategies with between australopiths and Homo spp., as Anton, Potts, and Aiello (2014) asserted; however, observed differences may also be due to the unreliability of measuring variance in small sample sizes. Identifiable fossil remains (identifiable to taxon and individual) are required by the VSH, to determine for example whether early Homo spp. are more variable than australopiths, a requirement which limits available samples. That sample is reduced again to include only complete elements, as Antón, Potts, and Aiello (2014) determined to only include the most complete elements in their analysis (see their Table 1) in effort to reduce the variation due to fragmentation or unassignable individual elements. This decision significantly reduced the overall number of testable variables within the study populations. Complete elements, particularly of the post crania, are rare, as the fossil hominin sample sizes used in this study indicate. Among molar areas, variation does not appear dramatically different among the extant pair than among the extinct pairings. Across all four teeth and all samples, TSVs range from 116.34 to 1049.42. This is a limited range of variation given that a) we know from Chapter One that the extant hominoid pair are not significantly different to each other in molar variation, and b) sample size can greatly affect CV reliability. Further, these values have not been adjusted for differences in absolute body size, a transformation which can reduce variation due only to size. Absolute body size differences may also be contributing to the generally high variance observed in the 99 femoral data, where mean femoral lengths span 289-450.5mm. This degree of absolute size variation should be accounted for before a reliable determination of variation can be made. Conclusion In previous chapters of this dissertation, I discuss patterns of variation as quite specific to the anatomic region from which the measures were obtained; for example, differences in variation were negligible among study taxa in molar dimensions, yet differences in postcranial bone lengths were detectable among those same taxa. In addition to sample size, measures of variance were also found to be highly influenced by factors such as anatomic region, sexual dimorphism, and absolute body size. Given these factors, I would expect that comparisons among fossil samples across anatomic regions and across taxa would require robust sample sizes to accurately detect population-level variation. Measuring variance from past populations, reliably and accurately, is difficult to accomplish because fossils are simply not as abundant as extant materials and likely never will be. The maximal limits of sample variation in any specific population are frequently not knowable given current fossil availability. Some studies, on the other hand, have attempted to determine just how large sample sizes must be in order to reliably record population differences in the past, as in the case of sexual dimorphism and species recognition (Plavcan and Cope 2001). The authors determined that most currently available fossil sample sizes were not sufficiently large as to reliably detect a consistent difference in species identification due in part to confounding factors like sexual 100 dimorphism. Due to these factors, constraint must be exercised when abstracting larger theoretical import of the apparent patterns of variation in the fossil record. While sample size may not be a serious limitation for many studies, e.g. reporting novel morphological descriptions or pathologies, but certain types of inquiries are likely to be constrained by fossil remains. Fossil assemblages allow an unparalleled view into the past. Skeletal remains can reveal information about the lifestyle, diet, and time period in which an individual lived. Intra-taxon morphological variation of extinct forms shows phenotypic changes over time among lineages, which can relate to adaptational patterns of environmental use (see Sanchez and Schoch 2013 for a relevant review in tetrapods). Combined with paleoecological evidence, fossil assemblages offer powerful insights into environments and populations that help us understand our modern world. However, preservational biases can obscure our ability to discern some of these patterns reliably, and this may be particularly true in the case of phenotypic signatures of VSH. The ability to detect the hypothesized signature of VSH (that is, increasing phenotypic variation as ecological versatility increases) is directly dependent on the ability to reliably detect sample variation at all. 101 CHAPTER V: CONCLUSION, MEASURING SKELETAL VARIATION IN VERSATILE PRIMATES Variation is the raw material on which selective pressures act (Darwin 1859). Therefore, variability, a measure of population variation can be indictive of selective pressures; these two characteristics (population variability and selective pressure) are related (Yablokov 1974). Some scholars argue variability itself is a characteristic that can be altered as part of an adaptive strategy, allowing populations to display a narrow or wide range of phenotypic (or genotypic) traits simultaneously (Grove 2014; Pfenning et al 2010; Potts 1998a; Vrba 1992). There may be an advantage for a diverse population in the face of environmental diversity or change (Turley and Frost 2018; Antón, Potts, and Aiello 2014; Kuzawa and Bragg 2012; Davidson, Jennions, and Nicotra 2011; Ash and Gallop 2007). In this dissertation, I assessed phenotypic variation in six selected catarrhine primate species. In total, 81 skeletal traits were analyzed across cranial, dental, and postcranial anatomic regions, using a total sample of 4084 extant individuals. The main hypothesis of this dissertation, that ecological versatility positively correlates with phenotypic variation, was not supported among the vast majority of craniodental or postcranial features researched here. Chapter One findings do not support the hypothesis of a correlative relationship between more ecologically versatile primates and in increase in variation among 102 craniodental materials. The coefficient of variation, a robust measure of variance, was only significantly different among any study pairs on three cranial or dental traits: pooled sex dentition, male dentition (likely the driver of the first result), and male crania. Among these, patterns between taxa are not apparent: P. troglodytes (a putative specialist) is most cranially variable, while Papio hamadryas (a putative versatilist) is more dentally variable. Further, modern humans are the least variable of all study species and are significantly less variable than P. troglodytes specifically among male crania. Although more apparent patterns of variation were observed in data which had not been adjusted to correct for absolute body size, these differences in variation disappeared once transformed data (by the geometric mean for that individual) was analyzed. Chapter Two results indicate that while different postcranial elements may reveal different profiles of variation, when taken together these measures do not show significant differences in variation among study taxa. Among the 53 linear measures analyzed, the majority of traits, and elements taken as whole regions, were not significantly different in terms of variation. As an exception, the length measurement of each long bone did display significant differences even after adjusted for absolute size. This result was driven by one major difference, among the baboon study pair (Papio hamadryas and Theropithecus gelada). Long bone lengths are a developmentally plastic characteristic (Stoessel, Kilbourne, and Fischer 2013; Cunnnigham, Schuer, and Black 2016), and this difference may reflect that plasticity in the sense that Papio hamadryas (sensu lato) occupies a broader range of habits and substrates than does Theropithecus gelada, which is restricted to grassy highlands (Rowe and Myers 2016). Among all skeletal traits examined in this dissertation, long bone lengths are perhaps the worthiest of 103 further investigation for the relationship between ecological versatility and phenotypic variation. Chapter Three results indicate that sample sizes required for accurately detecting patterns of phenotypic variation occupy a range of 30-52 individuals for molar areas, and 10-16 individuals for femoral lengths. These sample sizes are substantially larger than those offered by Antón, Potts, and Aiello (2014), and may be beyond currently available fossil sample sizes more generally. This result illustrates the limitations of assessing potentially adaptive signatures of variation; fossil sample size limits are so constrained that other factors of known variation (e.g. body size, sexual dimorphism, anatomic region) cannot be accounted for. These factors most certainly should provide caution for biological interpretation. Detecting differences in variation across species requires careful data preparation and study design. False positives, where associating an increase in variation with an exigent trait such ecological versatility, can occur in a number of reasonable scenarios if not specifically considered. Throughout this dissertation, I encountered various factors which confounded my ability to assess my central hypotheses. Although study species were carefully selected for availability in large number, and comparability on body size and phylogeny, results were often affected by sample size disparities, differing sexual dimorphism rates and magnitudes of skeletal measurements. In most cases, it was possible to reduce these factors through data transformations and cleaning techniques to arrive at reliable results. However, these techniques did reduce overall sample sizes, and similar limitations would be faced by like-minded studies. Where significant results did occur in this study, such as cranial differences between male P. troglodytes and H. 104 sapiens, or long bone length differences in Papio and Theropithecus, the patterns were subtle. Further investigation of these relationships, among extinct or extant populations would benefit from more postcranial data and specimen availability, and an increase in juvenile materials. Extant nonhuman primates exhibit a range of ecological versatility, providing an opportunity to study the potential advantages of ecological versatility in our close relatives. Almost 70% of primates today are determined to be “Near Threatened with Extinction” in the wild, or a more dire level of extinction threat (IUCN 2018). However, a few species have widespread populations, occurring in both arboreal and terrestrial environments and consuming variable diets that are often supplemented with human cultivated, manufactured, or distributed foods (IUCN 2018; Rowe and Myers 2016). The relative success of these species may reflect enhanced tolerance to environmental fluctuation (see Hill and Winder 2019 for operationalizing this in the study of baboons). The aim of this project was to test the hypothesis that more ecologically versatile species will exhibit greater phenotypic variation, measured as skeletal variation. Although these results cannot support that hypothesis to a great extent, I remain committed to understanding why some primates are thriving in our modern, fluctuating world. Detecting a signature of such adaptability has potential for increasing our understanding of biodiversity more generally, and perhaps predicting which species are likely to thrive into the next century. 105 APPENDIX A CRANIODENTAL MEASUREMENT PROTOCOL The focus of this protocol is on homologous anatomical landmarks between adult catarrhine taxa. Equivalent measures are provided where data was collected from other sources; complete references for equivalent measurements are located at end of measurement list and numbered in brackets throughout. Final analyses were conducted on variables 1-28 only, because 29-40 apply only Old World monkeys and were collapsed into variables 23-28. However, their inclusion here reflects a desire to be transparent in methodology. Cranial Measures, 1-16. All linear distances were collected by either spreading calipers (human specimens, oriented along the Frankfort horizon) or by deriving a linear distance from digitized 3D landmarks collected using a Microscribe 3DX (nonhuman primate specimens). 1. INBR. Parietal Length. Linear distance from inion (opisthicranion) to bregma, superior view. Inion and opisthocranion are equivalent between old world monkeys, chimpanzees, and humans. Equivalent to variables INBR (PRIMO [1]), PAC (Howells [2] and FDB [3]); equivalent to the linear distance between 3D landmarks F1,F2 (Frost [4]) and M1,M20 (McNulty [5]). 2. NAIN. Nasio-Occipital Length. Linear distance from nasion to inion, lateral view. Equivalent to variables NAIN [1] and NOL [2]; equivalent to the linear distance between 3D landmarks F1,F4 [4] and M1,M23 [5]. 106 3. NABR. Frontal Length. Linear distance from nasion to bregma, anterior view. Equivalent to variables NABR [1], FRC [2,3]; equivalent to the linear distance between 3D landmarks F2,F4 [4] and M20,M23 [5]. 4. BABR. Basion-Bregma Length. Linear distance from basion to bregma, lateral view. Equivalent to variables BABR [1], BBH [2,3]; equivalent to the linear distance between 3D landmarks F2,F31 [4] and M20,M60 [5]. 5. NAPR. Nasion-Prosthion Length. Linear distance from nasion to prosthion, anterior view. Howells’ NPH [2] is not quite equivalent, but very close: "Length of isosceles triangle rather than the bisector (ns)". This distinction does not matter for most studies, unless it is used in a proportional study. Also equivalent to NAPR [1]; equivalent to the linear distance between 3D landmarks F4,F7 [4] and M23,M35 [5]. 6. NABA. Nasion-Basion Length. Linear distance from nasion to basion, lateral view. Equivalent to variables NABA [1], BNL [2,3]; equivalent to the linear distance between 3D landmarks F4,F31 [4] and M23,M60 [5]. 7. PRBA. Prosthion-Basion Length. Linear distance from prosthion to basion, lateral view. Equivalent to variables BAPR [1], BPL [2,3]; equivalent to the linear distance between 3D landmarks F7,F31 [4] and M37,M60 [5]. 8. IORB. Interorbital Breadth. Linear distance from dacryon to dacryon, anterior view. For cercopithecoids, this measure is close to bi-dacryon; but often not taken as deep into orbit [1]. Equivalent for this study to variables INOR [1], DKB [2,3]; equivalent to the linear distance between 3D landmarks F12,F23 [4] and M12,M51 [5]. 9. BORB. Bi-Orbital Breadth. Linear distance from ectoconchion to ectoconchion, anterior view. For cercopithecoids, this measure is taken at the points on lateral margin of 107 frontal/zygoma; it is also known as the landmark FMO, near FMT [1]. Equivalent to variables BIOR [1], EKB [2,3]; equivalent to the linear distance between 3D landmarks F15,F26 [4] and M7,M46 [5]. 10. BIPO. Neurocranial Breadth. Linear distance from porion to porion, anterior view. Equivalent to variables MAXW [1], XCB [2,3]; equivalent to the linear distance between 3D landmarks F17,F28 [4] and M2,M41 [5]. 11. BIZY. Bi-Zygomatic Breadth. Maximum transverse breadth across zygomatics, anterior view. Equivalent to variables BIZY [1], ZYB [2,3]; equivalent to the linear distance between 3D landmarks F18,F29 [4] and M16,M55 [5]. 12. ORBH. Orbital Height. Measured at orbital rim along the midline, on the frontal at the superior point and on the maxilla at the inferior point. Anterior view, measured on the left orbit if possible. Equivalent to variables ORBH [1], OBH [2,3]; equivalent to the linear distance between 3D landmarks F22,F24 [4] and M48,M52 [5]. 13. ORBB. Orbital Breadth. Left if possible. Linear distance from dacryon to ectoconchion, anterior view. Measured on the left orbit if possible. Equivalent to variables ORBW [1], OBB [2,3]; equivalent to the linear distance between 3D landmarks F23,F26 [4] and M47,M51 [5]. 14. OPBA. Foramen Magnum Length. Linear distance from opisthion to basion, inferior view. Equivalent to variables FORL [1], FOL [2,3]; equivalent to the linear distance between 3D landmarks F30,F31 [4] and M59,M60 [5]. 15. BIPG. Bi-Auricular Breadth. Linear distance from postglenoid to postglenoid, inferior view; measured from the center of the inferiormost point of the process. 108 Equivalent to variables BIPG [1], AUB [2,3]; equivalent to the linear distance between 3D landmarks F34,F40 [4] and M61,M62 [5]. 16. BUME. External Palate Breadth. Linear distance from ectomolare to ectomolare, inferior view. This is the lateral point on the maxillary alveolar margin where M1 and M2 contact; ectomolare to ectomolare is usually the widest distance across the palate. Equivalent to variables BMEU [1], MAB [2,3]; equivalent to the linear distance between 3D landmarks F37,F43 [4] and M72,M81 [5]. Molar Measures, 17-40. All measures were collected using sliding calipers. Permanent molars are the most directly similar across taxa among all dentition and are not remodeled after eruption. Where significant distortion of the tooth was evident, such as exhibiting pathological conditions (enamel wear or breakage, caries), that tooth was not processed. 17. UM1MD. Upper Molar 1 Mesiodistal. Maximum mesiodistal length of the first upper molar, with external sliding caliper jaws perpendicular to tooth row. Equivalent to the variables UM1L [1] and M1 MD (Plavcan [6]). 18. UM2MD. Upper Molar 2 Mesiodistal. Maximum mesiodistal length of the second upper molar, with external sliding caliper jaws perpendicular to tooth row. Equivalent to the variables UM2L [1] and M2 MD [6]. 19. UM3MD. Upper Molar 3 Mesiodistal. Maximum mesiodistal length of the third upper molar, with external sliding caliper jaws perpendicular to tooth row. Equivalent to the variables UM3L [1] and M3 MD [6]. 109 20. LM1MD. Lower Molar 1 Mesiodistal. M Maximum mesiodistal length of the first lower molar, with external sliding caliper jaws perpendicular to tooth row. Equivalent to the variables LM1L [1] and m1 md [6]. 21. LM2MD. Lower Molar 2 Mesiodistal. Maximum mesiodistal length of the second lower molar, with external sliding caliper jaws perpendicular to tooth row. Equivalent to the variables LM2L [1] and m2 md [6]. 22. LM3MD. Lower Molar 3 Mesiodistal. Maximum mesiodistal length of the third lower molar, with external sliding caliper jaws perpendicular to tooth row. Equivalent to the variables LM3L [1] and m3 md [6]. 23. UM1BLX. Upper Molar 1 Buccolingual. Maximum buccolingual distance of the permanent first upper molar, with caliper arms parallel to the tooth row. Measured using internal jaws of sliding calipers; in old world monkeys, this measure is an average of the maximum buccolingual length of the mesial loph UM1MBL (29) and the maximum buccolingual length of the distal loph UM1DBL (30). Equivalent to the variable M1 BL [6]. 24. UM2BLX. Upper Molar 2 Buccolingual. Maximum buccolingual distance of the permanent second upper molar, with caliper arms parallel to the tooth row. Measured using internal jaws of sliding calipers; in old world monkeys, this measure is an average of the maximum buccolingual length of the mesial loph UM2MBL (31) and the maximum buccolingual length of the distal loph UM2DBL (32). Equivalent to the variable M2 BL [6]. 25. UM3BLX. Upper Molar 3 Buccolingual. Maximum buccolingual distance of the permanent third upper molar, with caliper arms parallel to the tooth row. Measured using 110 internal jaws of sliding calipers; in old world monkeys, this measure is an average of the maximum buccolingual length of the mesial loph UM3MBL (33) and the maximum buccolingual length of the distal loph UM3DBL (34). Equivalent to the variable M3 BL [6]. 26. LM1BLX. Lower Molar 1 Buccolingual. Maximum buccolingual distance of the permanent first lower molar, with caliper arms parallel to the tooth row. Measured using internal jaws of sliding calipers; in old world monkeys, this measure is an average of the maximum buccolingual length of the mesial loph LM1MBL (35) and the maximum buccolingual length of the distal loph LM1DBL (36). 27. LM2BLX. Lower Molar 2 Buccolingual. Maximum buccolingual distance of the permanent second lower molar, with caliper arms parallel to the tooth row. Measured using internal jaws of sliding calipers; in old world monkeys, this measure is an average of the maximum buccolingual length of the mesial loph LM2MBL (37) and the maximum buccolingual length of the distal loph LM2DBL (38). 28. LM3BLX. Lower Molar 3 Buccolingual. Maximum buccolingual distance of the permanent third lower molar, with caliper arms parallel to the tooth row. Measured using internal jaws of sliding calipers; in old world monkeys, this measure is an average of the maximum buccolingual length of the mesial loph LM3MBL (39) and the maximum buccolingual length of the distal loph LM3DBL (40). 29. UM1MBL. Upper Molar 1 Mesial Loph Buccolingual. Maximum buccolingual distance of the mesial loph of the first upper molar. Taken only in old world monkeys, it is measured using external jaws of sliding calipers. Equivalent to the variable UM1AW [1]. 111 30. UM1DBL. Upper Molar 1 Distal Loph Buccolingual. Maximum buccolingual distance of the distal loph of the first upper molar. Taken only in old world monkeys, it is measured using external jaws of sliding calipers. Equivalent to the variable UM1PW [1]. 31. UM2MBL. Upper Molar 2 Mesial Loph Buccolingual. Maximum buccolingual distance of the mesial loph of the second upper molar. Taken only in old world monkeys, it is measured using external jaws of sliding calipers. Equivalent to the variable UM2AW [1]. 32. UM2DBL. Upper Molar 2 Distal Loph Buccolingual. Maximum buccolingual distance of the distal loph of the second upper molar. Taken only in old world monkeys, it is measured using external jaws of sliding calipers. Equivalent to the variable UM2PW [1]. 33. UM3MBL. Upper Molar 3 Mesial Loph Buccolingual. Maximum buccolingual distance of the mesial loph of the third upper molar. Taken only in old world monkeys, it is measured using external jaws of sliding calipers. Equivalent to the variable UM3AW [1]. 34. UM3DBL. Upper Molar 3 Distal Loph Buccolingual. Maximum buccolingual distance of the distal loph of the third upper molar. Taken only in old world monkeys, it is measured using external jaws of sliding calipers. Equivalent to the variable UM3PW [1]. 35. LM1MBL. Lower Molar 1 Mesial Loph Buccolingual. Maximum buccolingual distance of the mesial loph of the first lower molar. Taken only in old world monkeys, it is measured using external jaws of sliding calipers. Equivalent to the variables LM1AW [1] and m1 bl tal [6]. 112 36. LM1DBL. Lower Molar 1 Distal Loph Buccolingual. Maximum buccolingual distance of the distal loph of the first lower molar. Taken only in old world monkeys, it is measured using external jaws of sliding calipers. Equivalent to the variables LM1PW [1] and m1 bl tri [6]. 37. LM2MBL. Lower Molar 2 Mesial Loph Buccolingual. Maximum buccolingual distance of the mesial loph of the second lower molar. Taken only in old world monkeys, it is measured using external jaws of sliding calipers. Equivalent to the variables LM2AW [1] and m2 bl tal [6]. 38. LM2DBL. Lower Molar 2 Distal Loph Buccolingual. Maximum buccolingual distance of the distal loph of the second lower molar. Taken only in old world monkeys, it is measured using external jaws of sliding calipers. Equivalent to the variables LM2PW [1] and m2 bl tri [6]. 39. LM3MBL. Lower Molar 3 Mesial Loph Buccolingual. Maximum buccolingual distance of the mesial loph of the third lower molar. Taken only in old world monkeys, it is measured using external jaws of sliding calipers. Equivalent to the variables LM3AW [1] and m3 bl tal [6]. 40. LM3DBL. Lower Molar 3 Distal Loph Buccolingual. Maximum buccolingual distance of the distal loph of the third lower molar. Taken only in old world monkeys, it is measured using external jaws of sliding calipers. Equivalent to the variables LM3PW [1] and m3 bl tri [6]. 113 References and Acknowledgements [1] PRIMO (Primate Morphometrics Online), the NYCEP Primate Morphometric database, is a resource for researchers who use metrical (including 3D) data to study aspects of primate morphology and evolution. Some data for this project were downloaded from PRIMO, the NYCEP Primate Morphology Online database (http://primo.nycep.org). I thank Dr. Eric Delson and colleagues for access to these data. [2] Howells, W.W., 1973. Cranial variation in man. A study by multivariate analysis of patterns of difference. Among recent human populations. Papers of the Peabody Museum of Archaeology and Ethnology, (67), pp. 1-259. Raw data from these publications is publicly available. I thank Dr. William Howells and colleagues for continued public access to these data. [3] FDB: The Forensic Anthropology Database provides the most detailed and common protocol for human skeletal materials. Langley, N.R., Jantz, L.M., Ousley, S.D., Jantz, R.L. and G.S. Milner. 2016. This manual provides standardized recording procedures and general recording formats for the documentation of human skeletal material in a forensic context. I thank these authors and colleagues for public access to these data. [4] Frost, S.R. Personal communication and sharing of his 3D digitized cercopithecine data. Data has appeared in publication, such as: Frost, S.R., Marcus, L.F., Bookstein, F.L., Reddy, D.P. and Delson, E., 2003. Cranial allometry, phylogeography, and systematics of large‐bodied papionins (primates: Cercopithecinae) inferred from geometric morphometric analysis of landmark data. The Anatomical Record Part A: 114 Discoveries in Molecular, Cellular, and Evolutionary Biology,275(2), pp. 1048-1072. I thank Dr. Stephen Frost and colleagues for access to these data. [5] McNulty, K.N. Personal communication and sharing of his 3D digitized chimpanzee data. Data has appeared in publication, such as: McNulty, K.P., Frost, S.R. and Strait, D.S. 2006. Examining affinities of the Taung child by developmental simulation. Journal of Human Evolution, 51(3), pp.274-296. I thank Dr. Kieran McNulty and colleagues for access to these data. [6] Plavcan, J.M. Personal communication and sharing of his dental caliper data from various primate taxa. Data has appeared in publication, such as: Plavcan, J.M. and Kay, R.F., 1988. Sexual dimorphism and dental variability in platyrrhine primates. International journal of primatology, 9(3), pp.169-178. I thank Dr. Michael Plavcan and colleagues for access to these data. 115 APPENDIX B CRANIODENTAL MEASURES OF VARIANCE 116 Table A. Unscaled Cranial Variation in Homo sapiens, by trait1 INBR NAIN NABR BABR NAPR NABA PRBA IORB BORB BIPO BIZY ORBH ORBB OPBA BIPG Pooled Sex N 2524 2524 2524 2524 2524 2524 2524 2524 2524 2524 2524 2524 2524 2524 2524 Range 46 49 35 48 34 37 43 19 30 51 53 15 13 23 51 (mm) Min 89 151 93 107 48 83 80 13 83 116 105 26 33 27 98 (mm) Max 135 200 128 155 82 120 123 32 113 167 158 41 46 50 149 (mm) Mean 110.58 176.89 109.539 131.644 65.976 99.120 97.782 21.382 97.339 136.848 130.766 33.668 39.487 35.785 120.591 (mm) Standard 0.13 0.16 0.109 0.144 0.110 0.116 0.127 0.048 0.084 0.145 0.155 0.044 0.040 0.053 0.147 Err. Standard 6.63 7.92 5.469 7.239 5.535 5.809 6.378 2.411 4.239 7.288 7.789 2.228 2.024 2.643 7.390 Dev. Sample 43.95 62.69 29.914 52.407 30.635 33.739 40.684 5.813 17.970 53.118 60.664 4.965 4.095 6.983 54.616 Var. Coeff. 6.00 4.48 4.993 5.499 8.389 5.860 6.523 11.276 4.355 5.326 5.956 6.619 5.125 7.385 6.128 of Var. Females Only N 1156 1156 1156 1156 1156 1156 1156 1156 1156 1156 1156 1156 1156 1156 1156 Range 38 43 32 42 32 30 33 19 22 45 41 12 11 17 41 (mm) Min 89 151 93 107 48 83 80 13 83 116 105 27 33 27 98 (mm) Max 127 194 125 149 80 113 113 32 105 161 146 39 44 44 139 (mm) Mean 107.973 172.728 106.967 128.178 63.542 96.247 95.448 20.791 95.165 134.151 125.582 33.353 38.681 34.815 116.922 (mm) Standard 0.183 0.198 0.142 0.181 0.145 0.144 0.169 0.070 0.105 0.194 0.170 0.063 0.054 0.071 0.187 Err. Standard 6.231 6.747 4.818 6.148 4.933 4.911 5.733 2.370 3.576 6.587 5.793 2.128 1.825 2.429 6.353 Dev. Sample 38.830 45.523 23.216 37.800 24.330 24.117 32.873 5.618 12.789 43.383 33.554 4.526 3.329 5.898 40.363 Var. Coeff. 5.771 3.906 4.504 4.797 7.763 5.102 6.007 11.401 3.758 4.910 4.613 6.379 4.717 6.976 5.434 of Var. 117 Males Only N 1368 1368 1368 1368 1368 1368 1368 1368 1368 1368 1368 1368 1368 1368 1368 Range 45 41 32 41 33 35 42 19 28 48 43 15 12 20 46 (mm) Min 90 159 96 114 49 85 81 13 85 119 115 26 34 30 103 (mm) Max 135 200 128 155 82 120 123 32 113 167 158 41 46 50 149 (mm) Mean 112.779 180.401 111.712 134.573 68.033 101.548 99.755 21.881 99.175 139.127 135.147 33.934 40.167 36.605 123.692 (mm) Standard 0.166 0.192 0.136 0.183 0.140 0.146 0.168 0.063 0.105 0.191 0.175 0.062 0.052 0.069 0.183 Err. Standard 6.142 7.088 5.028 6.785 5.171 5.387 6.230 2.332 3.872 7.073 6.456 2.277 1.932 2.537 6.760 Dev. Sample 37.724 50.245 25.276 46.043 26.738 29.019 38.811 5.436 14.989 50.031 41.684 5.185 3.733 6.437 45.696 Var. Coeff. 5.446 3.929 4.500 5.042 7.601 5.305 6.245 10.656 3.904 5.084 4.777 6.710 4.810 6.931 5.465 of Var. 1Cranial traits are defined in Appendix 1A. Table B. Scaled Cranial Variation in Homo sapiens, by trait1 INBR NAIN NABR BABR NAPR NABA PRBA IORB BORB BIPO BIZY ORBH ORBB OPBA BIPG Pooled Sex N 2524 2524 2524 2524 2524 2524 2524 2524 2524 2524 2524 2524 2524 2524 2524 Range 0.524 0.470 0.418 0.437 0.363 0.364 0.441 0.247 0.226 0.507 0.396 0.174 0.138 0.239 0.383 Min 1.110 2.003 1.168 1.438 0.634 1.070 1.013 0.161 1.125 1.496 1.442 0.324 0.426 0.358 1.344 Max 1.634 2.472 1.585 1.875 0.996 1.434 1.454 0.408 1.352 2.003 1.838 0.497 0.564 0.597 1.727 Mean 1.397 2.234 1.383 1.662 0.832 1.251 1.235 0.270 1.229 1.729 1.650 0.425 0.499 0.452 1.522 Standard 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.000 0.001 0.001 Err. Standard 0.075 0.066 0.052 0.066 0.052 0.046 0.064 0.029 0.033 0.079 0.054 0.025 0.019 0.029 0.061 Dev. Sample 0.006 0.004 0.003 0.004 0.003 0.002 0.004 0.001 0.001 0.006 0.003 0.001 0.000 0.001 0.004 Var. 118 Coeff. 5.378 2.963 3.745 3.960 6.227 3.670 5.164 10.600 2.655 4.596 3.297 5.943 3.854 6.366 4.039 of Var. Females Only N 1156 1156 1156 1156 1156 1156 1156 1156 1156 1156 1156 1156 1156 1156 1156 Range 0.461 0.402 0.317 0.395 0.332 0.348 0.377 0.244 0.211 0.497 0.359 0.137 0.136 0.195 0.383 Min 1.174 2.019 1.232 1.455 0.634 1.070 1.044 0.164 1.137 1.506 1.442 0.359 0.426 0.370 1.344 Max 1.634 2.420 1.549 1.850 0.965 1.417 1.421 0.408 1.348 2.003 1.801 0.497 0.562 0.565 1.727 Mean 1.400 2.239 1.387 1.662 0.823 1.247 1.237 0.270 1.234 1.740 1.628 0.432 0.501 0.451 1.515 Standard 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.002 Err. Standard 0.077 0.066 0.050 0.064 0.051 0.045 0.062 0.030 0.032 0.078 0.050 0.024 0.019 0.028 0.062 Dev. Sample 0.006 0.004 0.003 0.004 0.003 0.002 0.004 0.001 0.001 0.006 0.002 0.001 0.000 0.001 0.004 Var. Coeff. 5.530 2.940 3.639 3.830 6.196 3.607 5.027 11.106 2.627 4.491 3.054 5.580 3.780 6.290 4.076 of Var. Males Only N 1368 1368 1368 1368 1368 1368 1368 1368 1368 1368 1368 1368 1368 1368 1368 Range 0.524 0.470 0.418 0.437 0.344 0.330 0.441 0.226 0.226 0.479 0.348 0.174 0.120 0.239 0.368 Min 1.110 2.003 1.168 1.438 0.652 1.104 1.013 0.161 1.125 1.496 1.490 0.324 0.444 0.358 1.347 Max 1.634 2.472 1.585 1.875 0.996 1.434 1.454 0.388 1.352 1.975 1.838 0.497 0.564 0.597 1.715 Mean 1.394 2.229 1.380 1.663 0.840 1.254 1.232 0.270 1.225 1.719 1.669 0.419 0.496 0.452 1.528 Standard 0.002 0.002 0.001 0.002 0.001 0.001 0.002 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.002 Err. Standard 0.073 0.066 0.053 0.068 0.051 0.046 0.065 0.027 0.032 0.079 0.051 0.025 0.019 0.029 0.061 Dev. Sample 0.005 0.004 0.003 0.005 0.003 0.002 0.004 0.001 0.001 0.006 0.003 0.001 0.000 0.001 0.004 Var. Coeff. 5.239 2.967 3.822 4.067 6.104 3.706 5.272 10.156 2.638 4.618 3.045 5.882 3.853 6.430 3.972 of Var. 1 Scaled data has been adjusted to correct for body size, where adjusted data is “trait/geometric mean of individual=scaled trait”. 119 Table C. Unscaled Cranial Variation in Pan troglodytes, by trait1 INBR NAIN NABR BABR NAPR NABA PRBA IORB BORB BIPO BIZY ORBH ORBB OPBA BIPG Pooled Sex N 193 193 193 192 193 192 192 193 192 193 193 193 193 187 193 Range 32.626 62.547 36.843 33.273 79.763 57.789 105.585 24.364 64.070 64.371 60.972 22.623 17.028 12.669 49.140 (mm) Min 63.308 90.184 55.590 67.912 33.733 54.532 55.351 5.679 57.749 49.674 51.454 20.001 23.892 21.332 56.349 (mm) Max 95.934 152.730 92.432 101.185 113.496 112.321 160.936 30.043 121.820 114.045 112.426 42.624 40.920 34.001 105.489 (mm) Mean 79.190 126.790 71.700 86.836 77.398 93.259 120.180 16.526 93.560 93.628 87.456 32.861 32.954 27.799 84.839 (mm) Standard 0.353 0.655 0.420 0.360 0.963 0.779 1.543 0.377 0.896 0.923 0.911 0.213 0.207 0.170 0.684 Err. Standard 4.909 9.101 5.831 4.989 13.383 10.793 21.376 5.231 12.409 12.822 12.658 2.954 2.876 2.322 9.502 Dev. Sample 24.095 82.836 33.996 24.888 179.108 116.499 456.928 27.363 153.978 164.405 160.237 8.729 8.271 5.391 90.297 Var. Coeff. of 6.199 7.178 8.132 5.745 17.291 11.574 17.787 31.652 13.263 13.695 14.474 8.991 8.727 8.353 11.201 Var. Females Only N 103 103 103 103 103 103 103 103 102 103 103 103 103 101 103 Range 27.165 41.217 27.071 26.380 58.379 48.206 83.666 24.364 49.342 58.492 52.940 18.416 15.510 12.039 42.352 (mm) Min 68.769 102.862 60.310 74.805 40.915 61.603 65.094 5.679 65.836 50.881 55.890 24.208 23.892 21.963 56.693 (mm) Max 95.934 144.078 87.381 101.185 99.294 109.809 148.761 30.043 115.177 109.374 108.830 42.624 39.403 34.001 99.045 (mm) Mean 78.664 126.049 70.893 86.161 77.142 92.533 119.194 16.618 92.750 92.863 86.761 32.855 32.771 27.646 84.329 (mm) Standard 0.454 0.768 0.532 0.469 1.150 0.976 1.898 0.465 1.050 1.135 1.070 0.301 0.265 0.244 0.831 Err. Standard 4.603 7.797 5.400 4.764 11.671 9.902 19.259 4.718 10.608 11.519 10.855 3.056 2.692 2.457 8.429 Dev. Sample 21.191 60.792 29.158 22.700 136.203 98.059 370.923 22.256 112.526 132.683 117.841 9.341 7.245 6.035 71.048 Var. Coeff. of 5.852 6.186 7.617 5.530 15.129 10.702 16.158 28.388 11.437 12.404 12.512 9.302 8.213 8.886 9.995 Var. 120 Males Only N 90 90 90 89 90 89 89 90 90 90 90 90 90 86 90 Range 27.006 62.547 36.843 29.148 79.763 57.789 105.585 21.490 64.070 64.371 60.972 19.841 16.675 11.030 49.140 (mm) Min 63.308 90.184 55.590 67.912 33.733 54.532 55.351 5.975 57.749 49.674 51.454 20.001 24.245 21.332 56.349 (mm) Max 90.314 152.730 92.432 97.060 113.496 112.321 160.936 27.466 121.820 114.045 112.426 39.842 40.920 32.362 105.489 (mm) Mean 79.792 127.637 72.622 87.618 77.690 94.099 121.320 16.421 94.479 94.504 88.251 32.868 33.163 27.978 85.424 (mm) Standard 0.548 1.094 0.652 0.546 1.599 1.245 2.507 0.610 1.495 1.495 1.525 0.300 0.324 0.232 1.119 Err. Standard 5.197 10.376 6.189 5.153 15.170 11.742 23.651 5.788 14.183 14.183 14.472 2.850 3.075 2.154 10.617 Dev. Sample 27.006 107.670 38.309 26.555 230.130 137.866 559.354 33.503 201.144 201.155 209.429 8.125 9.457 4.638 112.726 Var. Coeff. of 6.513 8.130 8.523 5.881 19.526 12.478 19.494 35.249 15.011 15.008 16.398 8.672 9.273 7.697 12.429 Var. 1Cranial traits are defined in Appendix 1A. Table D. Scaled Cranial Variation in Pan troglodytes, by trait1 INBR NAIN NABR BABR NAPR NABA PRBA IORB BORB BIPO BIZY ORBH ORBB OPBA BIPG Pooled Sex N 193 193 193 192 193 192 192 193 192 193 193 193 193 187 193 Range 0.833 0.684 0.574 0.556 0.639 0.334 0.799 0.294 0.357 0.538 0.340 0.272 0.172 0.283 0.353 Min 0.960 1.623 0.854 1.133 0.828 1.249 1.359 0.112 1.286 1.087 1.174 0.419 0.449 0.324 1.128 Max 1.793 2.308 1.427 1.689 1.467 1.583 2.158 0.406 1.643 1.625 1.514 0.691 0.621 0.607 1.482 Mean 1.242 1.974 1.117 1.353 1.191 1.441 1.843 0.251 1.446 1.446 1.349 0.512 0.513 0.436 1.315 Standard Err. 0.012 0.008 0.006 0.008 0.008 0.004 0.012 0.004 0.004 0.006 0.005 0.003 0.002 0.004 0.004 Standard Dev. 0.166 0.114 0.090 0.115 0.105 0.053 0.167 0.061 0.057 0.082 0.067 0.044 0.032 0.056 0.059 Sample Var. 0.027 0.013 0.008 0.013 0.011 0.003 0.028 0.004 0.003 0.007 0.005 0.002 0.001 0.003 0.003 121 Coeff. of Var. 13.327 5.777 8.017 8.521 8.800 3.712 9.078 24.252 3.952 5.704 4.998 8.625 6.198 12.779 4.456 Females Only N 103 103 103 103 103 103 103 103 102 103 103 103 103 101 103 Range 0.778 0.647 0.459 0.518 0.540 0.295 0.693 0.294 0.261 0.524 0.297 0.186 0.137 0.279 0.332 Min 1.015 1.623 0.854 1.171 0.874 1.280 1.378 0.112 1.286 1.087 1.174 0.419 0.450 0.328 1.128 Max 1.793 2.270 1.313 1.689 1.415 1.575 2.071 0.406 1.547 1.611 1.472 0.605 0.587 0.607 1.461 Mean 1.236 1.969 1.108 1.349 1.194 1.438 1.842 0.254 1.440 1.441 1.346 0.513 0.511 0.435 1.312 Standard Err. 0.015 0.011 0.008 0.011 0.009 0.005 0.015 0.006 0.005 0.008 0.006 0.004 0.003 0.006 0.006 Standard Dev. 0.154 0.109 0.084 0.107 0.096 0.055 0.157 0.056 0.048 0.086 0.060 0.038 0.029 0.057 0.059 Sample Var. 0.024 0.012 0.007 0.011 0.009 0.003 0.025 0.003 0.002 0.007 0.004 0.001 0.001 0.003 0.004 Coeff. of Var. 12.474 5.533 7.588 7.904 8.041 3.795 8.537 21.996 3.341 5.982 4.446 7.370 5.585 13.007 4.509 Males Only N 90 90 90 89 90 89 89 90 90 90 90 90 90 86 90 Range 0.770 0.594 0.451 0.535 0.639 0.334 0.799 0.266 0.354 0.416 0.329 0.266 0.172 0.274 0.297 Min 0.960 1.714 0.977 1.133 0.828 1.249 1.359 0.120 1.289 1.209 1.185 0.425 0.449 0.324 1.185 Max 1.730 2.308 1.427 1.667 1.467 1.583 2.158 0.386 1.643 1.625 1.514 0.691 0.621 0.599 1.482 Mean 1.249 1.980 1.128 1.358 1.187 1.444 1.845 0.246 1.452 1.452 1.353 0.511 0.514 0.437 1.318 Standard Err. 0.019 0.013 0.010 0.013 0.012 0.006 0.019 0.007 0.007 0.008 0.008 0.005 0.004 0.006 0.006 Standard Dev. 0.178 0.120 0.095 0.125 0.114 0.052 0.179 0.066 0.066 0.078 0.075 0.051 0.035 0.055 0.058 Sample Var. 0.032 0.014 0.009 0.016 0.013 0.003 0.032 0.004 0.004 0.006 0.006 0.003 0.001 0.003 0.003 Coeff. of Var. 14.273 6.060 8.407 9.205 9.641 3.625 9.712 26.768 4.521 5.380 5.568 9.917 6.844 12.582 4.412 1 Scaled data has been adjusted to correct for body size, where adjusted data is “trait/geometric mean of individual=scaled trait”. 122 Table E. Unscaled Cranial Variation in Papio hamadryas, by trait1 INBR NAIN NABR BABR NAPR NABA PRBA IORB BORB BIPO BIZY ORBH ORBB OPBA BIPG Pooled Sex N 485 487 503 463 510 471 470 511 511 511 506 511 511 455 510 Range (mm) 26.566 44.635 31.861 22.701 105.803 36.552 97.812 10.501 26.424 44.822 64.565 12.342 12.513 11.673 42.329 Min (mm) 43.455 86.252 51.156 58.255 53.038 63.923 82.617 3.468 54.473 68.171 68.476 20.048 25.078 16.322 59.219 Max (mm) 70.021 130.886 83.017 80.956 158.841 100.475 180.429 13.969 80.897 112.993 133.042 32.390 37.590 27.995 101.548 Mean (mm) 56.731 109.240 64.046 68.397 111.720 81.818 137.655 8.145 67.946 91.040 100.260 24.707 31.199 21.887 80.998 Standard Err. 0.187 0.363 0.207 0.189 1.008 0.343 1.002 0.081 0.251 0.386 0.608 0.087 0.109 0.094 0.339 Standard Dev. 4.119 8.017 4.636 4.060 22.766 7.435 21.724 1.838 5.666 8.720 13.674 1.972 2.475 2.007 7.651 Sample Var. 16.968 64.280 21.495 16.487 518.269 55.276 471.913 3.379 32.103 76.038 186.982 3.889 6.125 4.029 58.532 Coeff. of Var. 7.261 7.339 7.239 5.936 20.377 9.087 15.781 22.570 8.339 9.578 13.639 7.981 7.933 9.171 9.445 Females Only N 165 166 172 156 175 159 159 175 175 175 173 175 175 154 174 Range (mm) 17.481 27.701 20.759 14.534 65.397 25.074 68.777 7.775 20.257 32.893 42.832 9.897 10.132 10.038 28.204 Min (mm) 46.853 86.252 51.156 58.255 53.038 63.923 82.617 3.468 54.473 68.171 68.476 20.205 25.078 16.563 59.219 Max (mm) 64.334 113.953 71.914 72.789 118.434 88.997 151.394 11.242 74.729 101.065 111.308 30.102 35.210 26.602 87.423 Mean (mm) 55.913 102.367 61.214 65.313 91.484 74.747 115.836 6.821 62.781 83.712 87.074 24.305 29.169 21.229 74.573 Standard Err. 0.270 0.441 0.284 0.225 1.090 0.359 0.945 0.085 0.256 0.467 0.610 0.138 0.133 0.148 0.422 Standard Dev. 3.463 5.688 3.730 2.809 14.425 4.521 11.919 1.122 3.389 6.183 8.023 1.826 1.755 1.841 5.569 Sample Var. 11.995 32.355 13.910 7.889 208.085 20.435 142.056 1.259 11.484 38.230 64.362 3.336 3.080 3.391 31.017 Coeff. of Var. 6.194 5.557 6.093 4.300 15.768 6.048 10.289 16.453 5.398 7.386 9.213 7.515 6.017 8.674 7.468 123 Males Only N 320 321 331 307 335 312 311 336 336 336 333 336 336 301 336 Range (mm) 26.566 36.167 30.063 22.567 94.607 31.848 90.343 10.315 23.064 41.859 58.871 12.342 11.843 11.673 38.494 Min (mm) 43.455 94.720 52.954 58.389 64.233 68.628 90.086 3.654 57.833 71.134 74.171 20.048 25.747 16.322 63.054 Max (mm) 70.021 130.886 83.017 80.956 158.841 100.475 180.429 13.969 80.897 112.993 133.042 32.390 37.590 27.995 101.548 Mean (mm) 57.153 112.795 65.517 69.964 122.291 85.421 148.810 8.834 70.636 94.856 107.110 24.917 32.257 22.224 84.326 Standard Err. 0.244 0.369 0.240 0.210 1.029 0.333 0.936 0.096 0.254 0.398 0.584 0.110 0.115 0.116 0.347 Standard Dev. 4.365 6.615 4.375 3.685 18.835 5.880 16.509 1.760 4.660 7.297 10.649 2.015 2.109 2.008 6.354 Sample Var. 19.052 43.763 19.139 13.581 354.774 34.574 272.531 3.097 21.715 53.245 113.405 4.059 4.449 4.033 40.369 Coeff. of Var. 7.637 5.865 6.677 5.267 15.402 6.883 11.094 19.922 6.597 7.693 9.942 8.085 6.539 9.036 7.535 1Cranial traits are defined in Appendix 1A. Table F. Scaled Cranial Variation in Papio hamadryas, by trait1 INBR NAIN NABR BABR NAPR NABA PRBA IORB BORB BIPO BIZY ORBH ORBB OPBA BIPG Pooled Sex N 485 487 503 463 510 471 470 511 511 511 506 511 511 455 510 Range 0.593 0.616 0.509 0.457 1.409 0.419 1.086 0.156 0.374 0.627 0.665 0.278 0.199 0.212 0.458 Min 0.725 1.698 0.959 1.021 1.146 1.258 1.770 0.073 1.084 1.375 1.522 0.338 0.487 0.287 1.238 Max 1.318 2.314 1.468 1.478 2.555 1.676 2.856 0.229 1.458 2.002 2.187 0.616 0.686 0.499 1.695 Mean 1.009 1.934 1.142 1.207 1.965 1.440 2.407 0.144 1.209 1.619 1.775 0.441 0.556 0.387 1.440 Standard Err. 0.005 0.003 0.004 0.003 0.011 0.002 0.009 0.001 0.002 0.004 0.006 0.002 0.001 0.001 0.003 Standard Dev. 0.101 0.074 0.079 0.073 0.248 0.054 0.201 0.025 0.054 0.080 0.134 0.042 0.030 0.031 0.064 Sample Var. 0.010 0.005 0.006 0.005 0.061 0.003 0.040 0.001 0.003 0.006 0.018 0.002 0.001 0.001 0.004 124 Coeff. of Var. 10.011 3.817 6.914 6.007 12.601 3.720 8.335 17.491 4.440 4.918 7.559 9.473 5.312 8.010 4.457 Females Only N 165 166 172 156 175 159 159 175 175 175 173 175 175 154 174 Range 0.446 0.556 0.424 0.354 1.010 0.387 1.008 0.133 0.354 0.565 0.430 0.250 0.198 0.181 0.390 Min 0.872 1.758 1.044 1.123 1.146 1.289 1.770 0.075 1.092 1.436 1.522 0.366 0.488 0.318 1.306 Max 1.318 2.314 1.468 1.478 2.156 1.676 2.779 0.208 1.446 2.002 1.952 0.616 0.686 0.499 1.695 Mean 1.082 1.975 1.190 1.255 1.765 1.434 2.217 0.132 1.221 1.625 1.687 0.473 0.567 0.408 1.447 Standard Err. 0.007 0.005 0.005 0.005 0.014 0.004 0.011 0.002 0.004 0.006 0.007 0.003 0.002 0.002 0.004 Standard Dev. 0.087 0.063 0.069 0.065 0.186 0.051 0.134 0.020 0.056 0.075 0.094 0.035 0.030 0.027 0.058 Sample Var. 0.007 0.004 0.005 0.004 0.035 0.003 0.018 0.000 0.003 0.006 0.009 0.001 0.001 0.001 0.003 Coeff. of Var. 8.003 3.177 5.771 5.190 10.549 3.573 6.056 15.324 4.551 4.622 5.600 7.348 5.205 6.536 4.012 Males Only N 320 321 331 307 335 312 311 336 336 336 333 336 336 301 336 Range 0.546 0.555 0.486 0.366 1.193 0.406 0.992 0.156 0.374 0.581 0.648 0.195 0.180 0.162 0.425 Min 0.725 1.698 0.959 1.021 1.362 1.258 1.864 0.073 1.084 1.375 1.539 0.338 0.487 0.287 1.238 Max 1.272 2.253 1.445 1.386 2.555 1.664 2.856 0.229 1.458 1.956 2.187 0.533 0.667 0.449 1.662 Mean 0.971 1.913 1.117 1.183 2.069 1.443 2.504 0.150 1.203 1.615 1.820 0.425 0.550 0.376 1.436 Standard Err. 0.005 0.004 0.004 0.004 0.011 0.003 0.009 0.001 0.003 0.004 0.007 0.002 0.002 0.002 0.004 Standard Dev. 0.086 0.070 0.072 0.064 0.209 0.055 0.154 0.025 0.052 0.082 0.129 0.036 0.028 0.027 0.067 Sample Var. 0.007 0.005 0.005 0.004 0.043 0.003 0.024 0.001 0.003 0.007 0.017 0.001 0.001 0.001 0.004 Coeff. of Var. 8.893 3.660 6.466 5.389 10.079 3.782 6.139 16.971 4.306 5.061 7.080 8.353 5.052 7.280 4.658 1 Scaled data has been adjusted to correct for body size, where adjusted data is “trait/geometric mean of individual=scaled trait”. 125 Table G. Unscaled Cranial Variation in Theropithecus gelada, by trait1 INBR NAIN NABR BABR NAPR NABA PRBA IORB BORB BIPO BIZY ORBH ORBB OPBA BIPG Pooled Sex N 42 42 42 42 42 42 42 42 41 41 42 40 41 41 42 Range (mm) 13.772 21.665 19.800 11.999 38.626 21.793 53.221 5.226 13.973 21.192 31.953 5.700 6.209 5.573 20.288 Min (mm) 41.357 86.863 54.502 58.844 64.414 65.448 87.257 4.716 49.202 70.935 78.882 17.682 23.014 16.749 61.507 Max (mm) 55.130 108.528 74.301 70.843 103.040 87.241 140.478 9.942 63.175 92.127 110.835 23.382 29.223 22.323 81.795 Mean (mm) 48.200 99.269 63.429 65.291 85.475 78.482 116.986 7.027 57.115 82.614 95.428 20.608 26.502 19.622 73.783 Standard Err. 0.541 0.810 0.746 0.558 1.722 0.926 2.001 0.163 0.590 0.931 1.316 0.232 0.262 0.211 0.845 Standard Dev. 3.504 5.252 4.835 3.615 11.159 6.004 12.969 1.057 3.779 5.961 8.526 1.470 1.679 1.351 5.476 Sample Var. 12.281 27.587 23.376 13.068 124.530 36.042 168.208 1.116 14.279 35.534 72.686 2.161 2.817 1.826 29.991 Coeff. of Var. 7.271 5.291 7.623 5.537 13.056 7.650 11.086 15.036 6.616 7.216 8.934 7.134 6.334 6.886 7.422 Females Only N 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 Range (mm) 10.362 12.217 13.098 4.737 14.086 11.125 25.633 2.953 10.486 12.268 11.141 3.325 5.007 3.062 11.837 Min (mm) 42.623 86.863 54.502 58.844 64.414 65.448 87.257 4.716 49.202 70.935 78.882 17.748 23.014 16.749 61.507 Max (mm) 52.985 99.080 67.600 63.581 78.500 76.573 112.890 7.670 59.688 83.203 90.023 21.072 28.021 19.812 73.344 Mean (mm) 48.138 93.597 59.626 60.805 71.283 70.871 100.597 6.362 53.203 75.307 84.691 19.263 24.865 18.623 67.255 Standard Err. 0.852 0.934 1.088 0.399 1.317 0.898 1.735 0.249 0.815 0.972 0.867 0.253 0.400 0.259 0.948 Standard Dev. 3.071 3.369 3.924 1.438 4.749 3.239 6.254 0.898 2.939 3.503 3.127 0.913 1.442 0.934 3.419 Sample Var. 9.430 11.352 15.396 2.068 22.555 10.491 39.111 0.807 8.640 12.272 9.780 0.833 2.078 0.872 11.689 Coeff. of Var. 6.379 3.600 6.581 2.365 6.662 4.570 6.217 14.121 5.525 4.652 3.693 4.739 5.798 5.014 5.083 Males Only N 29 29 29 29 29 29 29 29 28 28 29 27 28 28 29 Range (mm) 13.772 14.019 16.283 7.947 26.357 11.161 29.144 4.933 9.981 11.883 20.776 5.700 4.905 5.379 10.643 Min (mm) 41.357 94.509 58.018 62.896 76.683 76.081 111.335 5.009 53.193 80.244 90.059 17.682 24.317 16.943 71.152 Max (mm) 55.130 108.528 74.301 70.843 103.040 87.241 140.478 9.942 63.175 92.127 110.835 23.382 29.223 22.323 81.795 Mean (mm) 48.228 101.811 65.134 67.302 91.837 81.894 124.332 7.325 58.932 86.006 100.241 21.256 27.261 20.086 76.710 Standard Err. 0.693 0.692 0.786 0.403 1.133 0.567 1.299 0.185 0.483 0.584 0.923 0.237 0.221 0.240 0.595 Standard Dev. 3.733 3.728 4.232 2.172 6.103 3.055 6.995 0.996 2.554 3.091 4.973 1.232 1.167 1.270 3.202 Sample Var. 13.939 13.897 17.906 4.716 37.243 9.331 48.937 0.991 6.522 9.553 24.727 1.517 1.362 1.613 10.250 Coeff. of Var. 7.741 3.662 6.497 3.227 6.645 3.730 5.626 13.590 4.334 3.594 4.961 5.795 4.282 6.323 4.174 1Cranial traits are defined in Appendix 1A. 126 Table H. Scaled Cranial Variation in Theropithecus gelada, by trait1 INBR NAIN NABR BABR NAPR NABA PRBA IORB BORB BIPO BIZY ORBH ORBB OPBA BIPG Pooled Sex N 42 42 42 42 42 42 42 42 41 41 42 40 41 41 42 Range 0.331 0.264 0.330 0.209 0.501 0.150 0.512 0.083 0.178 0.277 0.347 0.103 0.100 0.105 0.223 Min 0.808 1.831 1.122 1.205 1.428 1.457 2.037 0.102 1.039 1.489 1.675 0.346 0.471 0.336 1.318 Max 1.139 2.095 1.451 1.414 1.930 1.608 2.549 0.185 1.217 1.767 2.022 0.449 0.571 0.441 1.541 Mean 0.958 1.968 1.257 1.294 1.686 1.553 2.310 0.139 1.134 1.640 1.887 0.410 0.527 0.390 1.460 Standard Err. 0.014 0.010 0.012 0.007 0.020 0.006 0.019 0.003 0.006 0.009 0.012 0.003 0.003 0.004 0.007 Standard Dev. 0.094 0.065 0.075 0.044 0.131 0.041 0.123 0.018 0.040 0.058 0.080 0.021 0.021 0.024 0.044 Sample Var. 0.009 0.004 0.006 0.002 0.017 0.002 0.015 0.000 0.002 0.003 0.006 0.000 0.000 0.001 0.002 Coeff. of Var. 9.783 3.297 5.984 3.384 7.746 2.612 5.330 12.625 3.550 3.548 4.236 5.203 3.950 6.060 3.009 Females Only N 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 Range 0.270 0.156 0.258 0.164 0.235 0.126 0.301 0.056 0.123 0.264 0.238 0.056 0.063 0.051 0.108 Min 0.869 1.939 1.193 1.250 1.428 1.471 2.037 0.105 1.094 1.503 1.675 0.393 0.508 0.374 1.394 Max 1.139 2.095 1.451 1.414 1.663 1.597 2.338 0.161 1.217 1.767 1.913 0.449 0.571 0.425 1.503 Mean 1.044 2.028 1.292 1.318 1.543 1.535 2.178 0.138 1.152 1.632 1.836 0.417 0.538 0.404 1.457 Standard Err. 0.022 0.013 0.020 0.013 0.018 0.011 0.020 0.005 0.009 0.020 0.020 0.004 0.005 0.005 0.010 Standard Dev. 0.080 0.046 0.071 0.046 0.065 0.041 0.072 0.016 0.032 0.073 0.072 0.016 0.019 0.017 0.036 Sample Var. 0.006 0.002 0.005 0.002 0.004 0.002 0.005 0.000 0.001 0.005 0.005 0.000 0.000 0.000 0.001 Coeff. of Var. 7.704 2.255 5.467 3.475 4.190 2.661 3.303 11.824 2.800 4.457 3.938 3.787 3.477 4.300 2.486 Males Only N 29 29 29 29 29 29 29 29 28 28 29 27 28 28 29 Range 0.262 0.204 0.275 0.142 0.444 0.150 0.375 0.083 0.157 0.229 0.251 0.090 0.083 0.105 0.223 Min 0.808 1.831 1.122 1.205 1.486 1.457 2.174 0.102 1.039 1.489 1.771 0.346 0.471 0.336 1.318 Max 1.069 2.035 1.397 1.347 1.930 1.608 2.549 0.185 1.196 1.718 2.022 0.436 0.554 0.441 1.541 Mean 0.920 1.941 1.242 1.283 1.750 1.561 2.369 0.140 1.126 1.644 1.910 0.406 0.521 0.383 1.462 Standard Err. 0.013 0.010 0.014 0.007 0.018 0.007 0.017 0.003 0.008 0.010 0.014 0.004 0.004 0.004 0.009 127 Standard Dev. 0.071 0.053 0.073 0.039 0.097 0.039 0.091 0.018 0.041 0.051 0.073 0.023 0.020 0.024 0.047 Sample Var. 0.005 0.003 0.005 0.002 0.009 0.001 0.008 0.000 0.002 0.003 0.005 0.001 0.000 0.001 0.002 Coeff. of Var. 7.763 2.736 5.887 3.030 5.566 2.468 3.840 13.130 3.681 3.115 3.827 5.631 3.762 6.169 3.248 1 Scaled data has been adjusted to correct for body size, where adjusted data is “trait/geometric mean of individual=scaled trait”. Table I. Unscaled Cranial Variation in Macaca fascicularis, by trait1 INBR NAIN NABR BABR NAPR NABA PRBA IORB BORB BIPO BIZY ORBH ORBB OPBA BIPG Pooled Sex N 243 243 243 242 243 242 242 243 243 243 243 243 243 242 243 Range (mm) 17.143 23.367 21.076 11.918 39.790 23.611 41.610 7.062 15.490 26.588 31.961 10.098 6.918 6.400 20.032 Min (mm) 31.138 66.134 38.982 42.073 34.324 46.796 60.988 0.921 40.328 49.929 52.926 18.071 19.490 12.260 41.890 Max (mm) 48.281 89.501 60.058 53.991 74.114 70.407 102.598 7.983 55.818 76.517 84.887 28.169 26.408 18.660 61.922 Mean (mm) 39.420 76.690 46.916 47.312 53.338 58.952 79.012 4.321 47.863 63.596 67.208 22.998 22.776 15.083 51.244 Standard Err. 0.206 0.276 0.198 0.156 0.494 0.264 0.582 0.069 0.178 0.327 0.430 0.128 0.085 0.076 0.250 Standard Dev. 3.206 4.302 3.089 2.431 7.705 4.111 9.051 1.081 2.776 5.097 6.710 1.989 1.319 1.175 3.889 Sample Var. 10.281 18.510 9.545 5.910 59.367 16.904 81.921 1.169 7.704 25.981 45.021 3.957 1.740 1.382 15.127 Coeff. of Var. 8.134 5.610 6.585 5.138 14.446 6.974 11.455 25.025 5.799 8.015 9.984 8.649 5.791 7.793 7.590 Females Only N 96 96 96 95 96 95 95 96 96 96 96 96 96 95 96 Range (mm) 16.589 13.767 12.726 9.026 26.342 15.237 23.875 6.907 12.096 20.171 20.249 9.466 5.856 5.516 12.418 Min (mm) 31.138 66.134 40.366 42.073 34.324 46.796 60.988 0.921 40.328 49.929 52.926 18.211 19.490 12.622 41.890 Max (mm) 47.726 79.901 53.092 51.099 60.666 62.032 84.863 7.828 52.423 70.100 73.175 27.677 25.346 18.138 54.308 Mean (mm) 38.565 73.499 45.519 45.743 47.769 55.619 70.970 3.980 45.953 60.057 60.908 22.543 21.911 14.787 47.836 Standard Err. 0.336 0.296 0.257 0.175 0.566 0.284 0.548 0.109 0.218 0.440 0.388 0.189 0.111 0.113 0.260 Standard Dev. 3.294 2.903 2.517 1.709 5.544 2.770 5.337 1.069 2.135 4.309 3.803 1.854 1.084 1.102 2.548 Sample Var. 10.848 8.427 6.336 2.920 30.735 7.673 28.483 1.143 4.558 18.567 14.465 3.437 1.175 1.215 6.491 Coeff. of Var. 8.541 3.950 5.530 3.736 11.606 4.980 7.520 26.865 4.646 7.175 6.244 8.224 4.947 7.453 5.326 Males Only N 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 Range (mm) 15.594 20.347 21.076 11.424 34.552 18.005 34.608 5.901 11.804 19.750 27.827 10.098 5.380 6.400 16.637 Min (mm) 32.686 69.153 38.982 42.567 39.561 52.402 67.990 2.083 44.014 56.767 57.060 18.071 21.028 12.260 45.285 Max (mm) 48.281 89.501 60.058 53.991 74.114 70.407 102.598 7.983 55.818 76.517 84.887 28.169 26.408 18.660 61.922 128 Mean (mm) 39.978 78.774 47.828 48.326 56.976 61.106 84.209 4.544 49.111 65.907 71.323 23.295 23.341 15.274 53.469 Standard Err. 0.250 0.310 0.255 0.189 0.551 0.274 0.569 0.085 0.199 0.344 0.387 0.167 0.094 0.098 0.237 Standard Dev. 3.031 3.759 3.095 2.289 6.685 3.326 6.900 1.033 2.416 4.168 4.697 2.024 1.142 1.185 2.869 Sample Var. 9.188 14.131 9.578 5.239 44.687 11.064 47.610 1.068 5.837 17.369 22.061 4.097 1.305 1.405 8.231 Coeff. of Var. 7.582 4.772 6.471 4.736 11.733 5.443 8.194 22.741 4.920 6.323 6.585 8.689 4.893 7.759 5.366 1Cranial traits are defined in Appendix 1A. Table J. Scaled Cranial Variation in Macaca fascicularis, by trait1 INBR NAIN NABR BABR NAPR NABA PRBA IORB BORB BIPO BIZY ORBH ORBB OPBA BIPG Pooled Sex N 243 243 243 242 243 242 242 243 243 243 243 243 243 242 243 Range 0.450 0.387 0.504 0.334 0.758 0.311 0.630 0.175 0.252 0.374 0.462 0.301 0.154 0.211 0.320 Min 0.860 1.864 1.033 1.090 1.063 1.363 1.773 0.028 1.166 1.471 1.558 0.456 0.531 0.304 1.181 Max 1.310 2.251 1.536 1.424 1.820 1.674 2.403 0.202 1.418 1.845 2.020 0.757 0.685 0.515 1.501 Mean 1.043 2.027 1.241 1.251 1.404 1.556 2.080 0.114 1.265 1.679 1.772 0.608 0.602 0.399 1.353 Standard Err. 0.006 0.004 0.005 0.004 0.009 0.003 0.008 0.002 0.003 0.005 0.006 0.003 0.002 0.002 0.004 Standard Dev. 0.089 0.063 0.075 0.060 0.142 0.043 0.128 0.025 0.042 0.071 0.093 0.046 0.025 0.035 0.056 Sample Var. 0.008 0.004 0.006 0.004 0.020 0.002 0.016 0.001 0.002 0.005 0.009 0.002 0.001 0.001 0.003 Coeff. of Var. 8.505 3.085 6.062 4.809 10.086 2.741 6.131 22.045 3.346 4.245 5.227 7.554 4.200 8.742 4.109 Females Only N 96 96 96 95 96 95 95 96 96 96 96 96 96 95 96 Range 0.438 0.329 0.410 0.264 0.758 0.300 0.452 0.175 0.252 0.329 0.361 0.216 0.128 0.176 0.233 Min 0.871 1.922 1.036 1.160 1.063 1.363 1.773 0.028 1.166 1.498 1.558 0.541 0.557 0.340 1.210 Max 1.310 2.251 1.446 1.424 1.820 1.663 2.225 0.202 1.418 1.827 1.918 0.757 0.685 0.515 1.443 Mean 1.078 2.053 1.272 1.277 1.332 1.552 1.978 0.111 1.283 1.675 1.700 0.629 0.612 0.413 1.336 Standard Err. 0.010 0.006 0.008 0.006 0.013 0.004 0.010 0.003 0.004 0.008 0.007 0.004 0.003 0.004 0.005 Standard Dev. 0.096 0.061 0.074 0.055 0.127 0.044 0.095 0.027 0.042 0.074 0.068 0.039 0.026 0.035 0.047 Sample Var. 0.009 0.004 0.005 0.003 0.016 0.002 0.009 0.001 0.002 0.005 0.005 0.002 0.001 0.001 0.002 129 Coeff. of Var. 8.883 2.990 5.808 4.297 9.549 2.817 4.822 24.304 3.262 4.403 3.973 6.168 4.303 8.511 3.547 Males Only N 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 Range 0.383 0.296 0.504 0.285 0.695 0.250 0.502 0.138 0.188 0.374 0.429 0.266 0.128 0.167 0.320 Min 0.860 1.864 1.033 1.090 1.099 1.423 1.900 0.054 1.178 1.471 1.590 0.456 0.531 0.304 1.181 Max 1.242 2.161 1.536 1.375 1.794 1.674 2.403 0.192 1.366 1.845 2.020 0.722 0.659 0.471 1.501 Mean 1.021 2.010 1.221 1.234 1.451 1.559 2.145 0.116 1.253 1.681 1.819 0.594 0.596 0.390 1.365 Standard Err. 0.006 0.005 0.006 0.005 0.011 0.003 0.008 0.002 0.003 0.006 0.006 0.004 0.002 0.003 0.005 Standard Dev. 0.076 0.057 0.069 0.057 0.131 0.042 0.100 0.024 0.038 0.070 0.075 0.045 0.022 0.032 0.058 Sample Var. 0.006 0.003 0.005 0.003 0.017 0.002 0.010 0.001 0.001 0.005 0.006 0.002 0.001 0.001 0.003 Coeff. of Var. 7.448 2.855 5.662 4.645 9.006 2.685 4.648 20.470 3.056 4.148 4.126 7.600 3.765 8.121 4.229 1 Scaled data has been adjusted to correct for body size, where adjusted data is “trait/geometric mean of individual=scaled trait”. 130 Table K. Unscaled Cranial Variation in Macaca nemestrina, by trait1 INBR NAIN NABR BABR NAPR NABA PRBA IORB BORB BIPO BIZY ORBH ORBB OPBA BIPG Pooled Sex N 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 Range (mm) 13.246 31.554 20.725 9.829 44.072 20.635 50.184 4.425 17.185 27.896 31.454 6.634 6.755 5.350 20.887 Min (mm) 38.508 78.086 48.627 48.564 49.366 57.078 73.321 3.336 46.898 59.421 64.248 21.661 22.865 14.053 53.349 Max (mm) 51.754 109.640 69.352 58.393 93.438 77.714 123.505 7.761 64.083 87.317 95.703 28.295 29.619 19.403 74.236 Mean (mm) 45.973 90.657 55.822 52.650 65.661 65.283 94.465 6.053 56.184 72.218 78.982 25.106 26.186 16.407 62.090 Standard Err. 0.971 1.773 1.050 0.493 3.050 1.543 3.421 0.289 1.158 1.865 2.320 0.469 0.475 0.337 1.389 Standard Dev. 4.120 7.520 4.456 2.090 12.939 6.547 14.515 1.225 4.912 7.911 9.843 1.989 2.015 1.431 5.895 Sample Var. 16.976 56.557 19.859 4.368 167.422 42.867 210.677 1.501 24.127 62.588 96.887 3.957 4.059 2.049 34.745 Coeff. of Var. 8.962 8.295 7.983 3.969 19.706 10.029 15.365 20.241 8.743 10.955 12.462 7.924 7.694 8.724 9.493 Females Only N 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 Range (mm) 13.246 12.974 9.131 5.790 17.758 7.682 17.286 4.425 11.656 12.007 13.484 6.569 3.630 4.281 10.517 Min (mm) 38.508 78.086 51.746 48.564 49.366 57.078 73.321 3.336 46.898 59.421 64.248 21.661 22.865 14.053 53.349 Max (mm) 51.754 91.060 60.877 54.355 67.124 64.761 90.606 7.761 58.555 71.428 77.733 28.230 26.495 18.333 63.866 Mean (mm) 43.929 85.656 55.252 51.563 56.146 60.760 83.396 5.792 52.965 65.927 71.071 24.667 24.826 15.616 57.641 Standard Err. 1.678 1.770 1.051 0.595 2.091 1.062 2.276 0.490 1.415 1.555 1.797 0.713 0.493 0.462 1.158 Standard Dev. 4.747 5.005 2.973 1.684 5.913 3.003 6.436 1.386 4.003 4.399 5.082 2.016 1.395 1.306 3.276 Sample Var. 22.537 25.051 8.839 2.836 34.968 9.016 41.425 1.922 16.021 19.349 25.826 4.063 1.946 1.707 10.733 Coeff. of Var. 10.807 5.843 5.381 3.266 10.532 4.942 7.718 23.935 7.557 6.672 7.150 8.171 5.619 8.366 5.684 Males Only N 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 Range (mm) 9.939 21.974 20.725 7.114 39.675 18.299 39.611 3.110 11.656 21.021 21.437 5.690 4.314 4.632 14.951 Min (mm) 41.285 87.666 48.627 51.279 53.763 59.415 83.894 4.616 52.427 66.295 74.266 22.605 25.305 14.771 59.285 Max (mm) 51.223 109.640 69.352 58.393 93.438 77.714 123.505 7.725 64.083 87.317 95.703 28.295 29.619 19.403 74.236 Mean (mm) 47.609 94.658 56.277 53.520 73.274 68.902 103.320 6.263 58.758 77.250 85.311 25.457 27.273 17.040 65.650 Standard Err. 0.886 2.176 1.735 0.644 3.797 2.030 4.119 0.351 1.286 1.997 2.506 0.633 0.565 0.392 1.600 Standard Dev. 2.802 6.880 5.488 2.038 12.008 6.421 13.027 1.110 4.067 6.314 7.924 2.002 1.788 1.241 5.060 Sample Var. 7.849 47.330 30.119 4.154 144.180 41.226 169.690 1.231 16.543 39.862 62.793 4.007 3.197 1.540 25.606 Coeff. of Var. 5.885 7.268 9.752 3.808 16.387 9.319 12.608 17.719 6.922 8.173 9.289 7.864 6.557 7.283 7.708 1Cranial traits are defined in Appendix 1A. 131 Table L. Scaled Cranial Variation in Macaca nemestrina, by trait1 INBR NAIN NABR BABR NAPR NABA PRBA IORB BORB BIPO BIZY ORBH ORBB OPBA BIPG Pooled Sex N 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 Range 0.280 0.264 0.358 0.272 0.611 0.291 0.507 0.083 0.103 0.191 0.281 0.165 0.060 0.096 0.134 Min 0.908 1.858 1.050 1.021 1.234 1.344 1.883 0.087 1.206 1.527 1.644 0.503 0.549 0.323 1.324 Max 1.188 2.122 1.408 1.292 1.845 1.634 2.390 0.171 1.310 1.718 1.925 0.668 0.610 0.419 1.458 Mean 1.029 2.027 1.252 1.182 1.457 1.458 2.100 0.135 1.255 1.611 1.760 0.563 0.586 0.368 1.387 Standard Err. 0.018 0.014 0.025 0.018 0.045 0.016 0.035 0.005 0.007 0.015 0.019 0.011 0.004 0.007 0.009 Standard Dev. 0.078 0.060 0.106 0.076 0.189 0.069 0.150 0.021 0.029 0.063 0.080 0.046 0.015 0.030 0.037 Sample Var. 0.006 0.004 0.011 0.006 0.036 0.005 0.023 0.000 0.001 0.004 0.006 0.002 0.000 0.001 0.001 Coeff. of Var. 7.569 2.978 8.449 6.424 12.985 4.740 7.143 15.940 2.288 3.940 4.554 8.132 2.611 8.282 2.646 Females Only N 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 Range 0.218 0.110 0.194 0.141 0.243 0.166 0.148 0.083 0.058 0.105 0.128 0.156 0.031 0.096 0.134 Min 0.970 1.980 1.214 1.152 1.234 1.344 1.883 0.087 1.230 1.528 1.644 0.512 0.579 0.323 1.324 Max 1.188 2.090 1.408 1.292 1.476 1.510 2.031 0.171 1.288 1.633 1.772 0.668 0.610 0.419 1.458 Mean 1.046 2.042 1.320 1.231 1.337 1.450 1.986 0.137 1.261 1.571 1.693 0.589 0.592 0.373 1.375 Standard Err. 0.025 0.014 0.029 0.019 0.035 0.022 0.018 0.009 0.007 0.014 0.014 0.019 0.003 0.011 0.015 Standard Dev. 0.072 0.039 0.083 0.053 0.100 0.063 0.050 0.027 0.021 0.039 0.039 0.053 0.010 0.032 0.043 Sample Var. 0.005 0.002 0.007 0.003 0.010 0.004 0.002 0.001 0.000 0.001 0.002 0.003 0.000 0.001 0.002 Coeff. of Var. 6.898 1.902 6.276 4.327 7.467 4.342 2.497 19.428 1.655 2.459 2.325 9.021 1.625 8.657 3.141 Males Only N 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 Range 0.233 0.264 0.292 0.211 0.589 0.269 0.427 0.054 0.103 0.191 0.187 0.098 0.050 0.077 0.095 Min 0.908 1.858 1.050 1.021 1.255 1.366 1.963 0.098 1.206 1.527 1.738 0.503 0.549 0.328 1.360 Max 1.141 2.122 1.342 1.232 1.845 1.634 2.390 0.153 1.310 1.718 1.925 0.601 0.599 0.405 1.454 Mean 1.016 2.015 1.198 1.142 1.553 1.465 2.191 0.133 1.250 1.643 1.813 0.542 0.581 0.364 1.396 Standard Err. 0.026 0.023 0.029 0.022 0.061 0.024 0.045 0.006 0.011 0.020 0.020 0.008 0.006 0.009 0.009 Standard Dev. 0.084 0.073 0.092 0.069 0.192 0.076 0.141 0.018 0.034 0.062 0.062 0.025 0.018 0.030 0.029 Sample Var. 0.007 0.005 0.009 0.005 0.037 0.006 0.020 0.000 0.001 0.004 0.004 0.001 0.000 0.001 0.001 Coeff. of Var. 8.234 3.628 7.716 6.041 12.354 5.214 6.428 13.278 2.726 3.795 3.431 4.699 3.016 8.243 2.102 1 Scaled data has been adjusted to correct for body size, where adjusted data is “trait/geometric mean of individual=scaled trait”. 132 Table M. Unscaled Molar Variation in Homo sapiens, by trait1 UM1md UM2md UM3md UM1bl UM2bl UM3bl LM1md LM2md LM3md LM1bl LM2bl LM3bl Homo sapiens Pooled Sex N 42 41 38 41 42 40 42 41 37 40 42 40 Range (mm) 5.25 3.62 4.78 2.67 4.03 4.79 3.29 3.88 4.25 2.25 2.965 3.94 Min (mm) 6.62 8 6.87 9.95 8.69 9.08 9.58 9.87 9.5 9.185 8.935 8.245 Max (mm) 11.87 11.62 11.65 12.62 12.72 13.87 12.87 13.75 13.75 11.435 11.9 12.185 Mean (mm) 10.448 10.271 9.331 11.309 11.179 11.351 11.324 11.757 11.436 10.456 10.497 10.329 Standard Error 0.133 0.119 0.167 0.104 0.127 0.173 0.125 0.131 0.181 0.092 0.087 0.128 Standard Deviation 0.862 0.761 1.027 0.665 0.825 1.094 0.807 0.838 1.102 0.579 0.565 0.809 Sample Variance 0.744 0.579 1.054 0.442 0.681 1.197 0.651 0.701 1.214 0.336 0.319 0.654 Coefficient of V 8.253 7.410 11.004 5.876 7.381 9.638 7.126 7.124 9.633 5.540 5.382 7.828 Females Only N 20 19 18 20 20 20 20 19 17 20 20 20 Range (mm) 4.5 3.58 4.78 1.92 3.36 3.2 2.67 3.13 4 2 2.425 3.44 Min (mm) 6.62 8 6.87 9.95 8.69 9.17 9.58 9.87 9.5 9.185 8.935 8.245 Max (mm) 11.12 11.58 11.65 11.87 12.05 12.37 12.25 13 13.5 11.185 11.36 11.685 Mean (mm) 10.141 10.141 9.192 11.034 10.747 11.152 10.979 11.379 11.035 10.254 10.305 10.183 Standard Error 0.215 0.183 0.265 0.137 0.168 0.199 0.175 0.182 0.229 0.125 0.133 0.204 Standard Deviation 0.964 0.798 1.124 0.613 0.752 0.888 0.782 0.791 0.943 0.558 0.597 0.914 Sample Variance 0.929 0.637 1.264 0.376 0.566 0.789 0.611 0.626 0.889 0.311 0.356 0.835 Coefficient of V 9.502 7.871 12.231 5.555 7.000 7.966 7.120 6.953 8.543 5.439 5.789 8.975 Males Only N 22 22 20 21 22 20 22 22 20 21 22 20 Range (mm) 2.92 2.62 3.15 2.6 2.61 4.79 2.71 2.9 4.15 1.925 2 2.755 Min (mm) 8.95 9 7.6 10.02 10.11 9.08 10.16 10.85 9.6 9.51 9.9 9.43 Max (mm) 11.87 11.62 10.75 12.62 12.72 13.87 12.87 13.75 13.75 11.435 11.9 12.185 Mean (mm) 10.727 10.384 9.457 11.571 11.572 11.550 11.637 12.083 11.778 10.632 10.672 10.475 Standard Error 0.141 0.155 0.211 0.134 0.147 0.281 0.151 0.159 0.253 0.118 0.103 0.152 Standard Deviation 0.663 0.727 0.942 0.615 0.691 1.259 0.709 0.748 1.133 0.540 0.484 0.680 Sample Variance 0.440 0.528 0.887 0.378 0.478 1.584 0.503 0.559 1.285 0.291 0.234 0.462 Coefficient of V 6.185 7.001 9.961 5.314 5.974 10.897 6.092 6.186 9.623 5.076 4.533 6.489 1Molar traits are defined in Appendix 1A. 133 Table N. Scaled Molar Variation in Homo sapiens, by trait1 UM1md UM2md UM3md UM1bl UM2bl UM3bl LM1md LM2md LM3md LM1bl LM2bl LM3bl Homo sapiens Pooled Sex N 42 41 38 41 42 40 42 41 37 41 42 40 Range 0.439 0.167 0.296 0.276 0.189 0.283 0.210 0.165 0.301 0.189 0.156 0.160 Min 0.652 0.863 0.745 0.886 0.924 0.890 0.950 1.009 0.903 0.870 0.891 0.875 Max 1.091 1.030 1.042 1.162 1.113 1.173 1.160 1.174 1.204 1.059 1.047 1.035 Mean 0.970 0.950 0.865 1.051 1.037 1.055 1.051 1.087 1.060 0.971 0.975 0.961 Standard Error 0.010 0.007 0.010 0.008 0.007 0.010 0.006 0.006 0.010 0.005 0.005 0.006 Standard Deviation 0.066 0.046 0.064 0.052 0.044 0.061 0.042 0.042 0.058 0.033 0.032 0.041 Sample Variance 0.004 0.002 0.004 0.003 0.002 0.004 0.002 0.002 0.003 0.001 0.001 0.002 Coefficient of V 6.821 4.853 7.409 4.943 4.200 5.781 3.997 3.827 5.452 3.418 3.271 4.248 Females Only N 20 19 18 20 20 20 20 19 17 20 20 20 Range 0.439 0.166 0.282 0.230 0.189 0.181 0.128 0.150 0.258 0.092 0.084 0.160 Min 0.652 0.864 0.760 0.932 0.924 0.964 0.975 1.009 0.947 0.930 0.937 0.875 Max 1.091 1.030 1.042 1.162 1.113 1.145 1.103 1.160 1.204 1.022 1.020 1.035 Mean 0.966 0.960 0.871 1.052 1.024 1.061 1.045 1.077 1.049 0.977 0.981 0.968 Standard Error 0.020 0.011 0.018 0.012 0.012 0.011 0.010 0.010 0.013 0.006 0.004 0.010 Standard Deviation 0.088 0.046 0.077 0.053 0.054 0.048 0.043 0.042 0.055 0.028 0.019 0.045 Sample Variance 0.008 0.002 0.006 0.003 0.003 0.002 0.002 0.002 0.003 0.001 0.000 0.002 Coefficient of V 9.104 4.817 8.852 4.995 5.253 4.538 4.069 3.938 5.201 2.860 1.938 4.618 Males Only N 22 22 20 21 22 20 22 22 20 21 22 20 Range 0.159 0.159 0.202 0.233 0.099 0.283 0.210 0.161 0.262 0.189 0.156 0.142 Min 0.889 0.863 0.745 0.886 1.004 0.890 0.950 1.014 0.903 0.870 0.891 0.878 Max 1.048 1.022 0.947 1.118 1.102 1.173 1.160 1.174 1.164 1.059 1.047 1.020 Mean 0.973 0.942 0.859 1.051 1.049 1.049 1.056 1.096 1.070 0.965 0.969 0.953 Standard Error 0.008 0.010 0.011 0.012 0.006 0.016 0.009 0.008 0.013 0.008 0.008 0.008 Standard Deviation 0.039 0.045 0.051 0.053 0.028 0.072 0.042 0.040 0.060 0.037 0.040 0.036 Sample Variance 0.002 0.002 0.003 0.003 0.001 0.005 0.002 0.002 0.004 0.001 0.002 0.001 Coefficient of V 4.006 4.823 5.929 5.016 2.623 6.901 3.966 3.631 5.622 3.869 4.106 3.788 1 Scaled data has been adjusted to correct for body size, where adjusted data is “trait/geometric mean of individual=scaled trait”. 134 Table O. Unscaled Molar Variation in Pan troglodytes, by trait1 UM1md UM2md UM3md UM1bl UM2bl UM3bl LM1md LM2md LM3md LM1bl LM2bl LM3bl Pan troglodytes Pooled Sex N 85 83 82 81 81 78 86 85 81 77 80 80 Range (mm) 3.47 4.77 4.53 3.15 4.43 4.58 2.97 3.18 3.68 1.955 2.64 2.875 Min (mm) 8.41 7.86 7.6 9.1 8.7 8.42 9.78 9.95 9.45 8.61 8.8 8.565 Max (mm) 11.88 12.63 12.13 12.25 13.13 13 12.75 13.13 13.13 10.565 11.44 11.44 Mean (mm) 10.390 10.340 9.555 11.063 11.404 10.770 11.503 11.621 10.959 9.765 10.338 9.887 Standard Error 0.077 0.094 0.095 0.073 0.096 0.111 0.066 0.072 0.079 0.056 0.062 0.071 Standard Deviation 0.709 0.852 0.858 0.657 0.860 0.977 0.614 0.666 0.710 0.494 0.551 0.636 Sample Variance 0.503 0.727 0.737 0.431 0.740 0.954 0.377 0.444 0.504 0.244 0.304 0.405 Coefficient of V 6.828 8.244 8.985 5.935 7.541 9.068 5.336 5.734 6.478 5.056 5.329 6.433 Females Only N 50 50 46 48 46 44 50 49 45 45 45 45 Range (mm) 2.76 3.89 3.22 3.15 3.45 4.22 2.97 3.18 3 1.735 1.815 2.055 Min (mm) 8.62 7.86 7.6 9.1 9.55 8.78 9.78 9.95 9.55 8.77 9.31 8.565 Max (mm) 11.38 11.75 10.82 12.25 13 13 12.75 13.13 12.55 10.505 11.125 10.62 Mean (mm) 10.298 10.112 9.339 10.959 11.230 10.499 11.445 11.508 10.807 9.717 10.203 9.673 Standard Error 0.087 0.112 0.116 0.093 0.115 0.136 0.086 0.096 0.092 0.069 0.070 0.076 Standard Deviation 0.614 0.795 0.787 0.642 0.777 0.899 0.610 0.671 0.618 0.464 0.467 0.513 Sample Variance 0.376 0.632 0.620 0.412 0.604 0.808 0.372 0.450 0.381 0.215 0.218 0.263 Coefficient of V 5.958 7.859 8.428 5.857 6.918 8.563 5.331 5.831 5.714 4.772 4.575 5.303 Males Only N 35 33 36 33 35 34 36 36 36 32 35 35 Range (mm) 3.47 4.32 4.38 2.97 4.43 4.46 2.55 2.6 3.68 1.955 2.64 2.84 Min (mm) 8.41 8.31 7.75 9.28 8.7 8.42 10 10.15 9.45 8.61 8.8 8.6 Max (mm) 11.88 12.63 12.13 12.25 13.13 12.88 12.55 12.75 13.13 10.565 11.44 11.44 Mean (mm) 10.520 10.685 9.831 11.214 11.633 11.121 11.583 11.773 11.150 9.832 10.512 10.163 Standard Error 0.138 0.145 0.146 0.115 0.155 0.167 0.103 0.106 0.130 0.094 0.103 0.115 Standard Deviation 0.819 0.831 0.877 0.658 0.920 0.973 0.619 0.637 0.778 0.533 0.606 0.679 Sample Variance 0.671 0.691 0.769 0.433 0.846 0.947 0.383 0.406 0.605 0.284 0.368 0.460 Coefficient of V 7.788 7.779 8.920 5.868 7.907 8.753 5.340 5.413 6.978 5.424 5.769 6.677 1Molar traits are defined in Appendix 1A. 135 Table P. Scaled Molar Variation in Pan troglodytes, by trait1 UM1md UM2md UM3md UM1bl UM2bl UM3bl LM1md LM2md LM3md LM1bl LM2bl LM3bl Pan troglodytes Pooled Sex N 85 83 82 81 81 78 86 85 81 77 80 80 Range 0.174 0.258 0.239 0.154 0.251 0.277 0.257 0.190 0.221 0.209 0.136 0.216 Min 0.887 0.803 0.778 0.962 0.926 0.869 0.984 1.014 0.940 0.806 0.906 0.834 Max 1.060 1.061 1.017 1.115 1.177 1.145 1.241 1.204 1.160 1.014 1.042 1.050 Mean 0.982 0.975 0.898 1.041 1.073 1.010 1.088 1.098 1.032 0.922 0.973 0.930 Standard Error 0.005 0.005 0.006 0.004 0.005 0.007 0.005 0.004 0.005 0.004 0.003 0.005 Standard Deviation 0.043 0.047 0.051 0.036 0.047 0.061 0.047 0.039 0.048 0.035 0.030 0.042 Sample Variance 0.002 0.002 0.003 0.001 0.002 0.004 0.002 0.002 0.002 0.001 0.001 0.002 Coefficient of V 4.383 4.831 5.728 3.427 4.405 6.013 4.355 3.558 4.660 3.809 3.098 4.547 Females Only N 50 50 46 48 46 44 50 49 45 45 45 45 Range 0.165 0.252 0.208 0.144 0.192 0.276 0.257 0.189 0.204 0.136 0.136 0.216 Min 0.895 0.803 0.778 0.962 0.958 0.869 0.984 1.014 0.940 0.878 0.906 0.834 Max 1.060 1.056 0.986 1.106 1.150 1.145 1.241 1.204 1.144 1.014 1.042 1.050 Mean 0.987 0.967 0.890 1.048 1.072 0.998 1.098 1.103 1.031 0.930 0.975 0.924 Standard Error 0.005 0.007 0.008 0.005 0.007 0.009 0.007 0.006 0.007 0.005 0.005 0.006 Standard Deviation 0.038 0.049 0.053 0.035 0.044 0.062 0.050 0.041 0.047 0.033 0.034 0.044 Sample Variance 0.001 0.002 0.003 0.001 0.002 0.004 0.003 0.002 0.002 0.001 0.001 0.002 Coefficient of V 3.859 5.068 5.918 3.353 4.129 6.229 4.582 3.715 4.555 3.496 3.439 4.713 Males Only N 35 33 36 33 35 34 36 36 36 32 35 35 Range 0.172 0.140 0.209 0.145 0.251 0.275 0.175 0.145 0.219 0.172 0.107 0.153 Min 0.887 0.921 0.808 0.970 0.926 0.869 0.994 1.014 0.941 0.806 0.931 0.866 Max 1.059 1.061 1.017 1.115 1.177 1.144 1.169 1.160 1.160 0.977 1.038 1.019 Mean 0.975 0.988 0.909 1.032 1.074 1.027 1.074 1.092 1.034 0.911 0.971 0.939 Standard Error 0.008 0.007 0.008 0.006 0.009 0.010 0.007 0.006 0.008 0.006 0.004 0.007 Standard Deviation 0.049 0.042 0.049 0.035 0.052 0.056 0.040 0.036 0.050 0.036 0.025 0.040 Sample Variance 0.002 0.002 0.002 0.001 0.003 0.003 0.002 0.001 0.003 0.001 0.001 0.002 Coefficient of V 5.018 4.233 5.351 3.378 4.802 5.406 3.703 3.300 4.849 3.969 2.616 4.232 1 Scaled data has been adjusted to correct for body size, where adjusted data is “trait/geometric mean of individual=scaled trait”. 136 Table Q. Unscaled Molar Variation in Papio hamadryas, by trait1 UM1md UM2md UM3md UM1bl UM2bl UM3bl LM1md LM2md LM3md LM1bl LM2bl LM3bl Papio hamadryas Pooled Sex N 316 379 304 300 361 347 314 380 300 295 360 288 Range (mm) 5.97 7.83 8.31 6.02 7.65 9.99 5.085 6.785 6.33 4.55 5.695 6.195 Min (mm) 7.13 7.79 8.09 6.48 7.65 10.13 6.79 7.255 7.67 5.48 7 6.92 Max (mm) 13.1 15.62 16.4 12.5 15.3 20.12 11.875 14.04 14 10.03 12.695 13.115 Mean (mm) 10.456 12.540 12.828 10.114 12.233 15.590 9.462 11.148 11.157 8.104 9.877 10.245 Standard Error 0.066 0.074 0.096 0.067 0.072 0.095 0.047 0.053 0.067 0.045 0.050 0.065 Standard Deviation 1.168 1.438 1.672 1.165 1.372 1.766 0.830 1.036 1.154 0.765 0.950 1.100 Sample Variance 1.364 2.067 2.794 1.357 1.883 3.117 0.689 1.073 1.332 0.585 0.902 1.210 Coefficient of V 11.169 11.467 13.031 11.517 11.218 11.325 8.773 9.290 10.344 9.437 9.617 10.737 Females Only N 132 138 122 126 132 117 131 140 118 125 132 114 Range (mm) 5.57 7.61 7.81 5.52 7.65 7.87 3.98 5.365 4.955 4.095 4.72 4.785 Min (mm) 7.13 7.79 8.09 6.48 7.65 10.13 6.79 7.255 7.67 5.48 7 6.92 Max (mm) 12.7 15.4 15.9 12 15.3 18 10.77 12.62 12.625 9.575 11.72 11.705 Mean (mm) 9.959 11.964 11.993 9.537 11.603 14.712 8.998 10.500 10.412 7.702 9.284 9.584 Standard Error 0.102 0.129 0.140 0.103 0.123 0.167 0.069 0.086 0.094 0.065 0.080 0.098 Standard Deviation 1.172 1.510 1.545 1.157 1.411 1.802 0.792 1.019 1.026 0.730 0.916 1.043 Sample Variance 1.375 2.279 2.386 1.339 1.990 3.247 0.627 1.038 1.053 0.533 0.839 1.088 Coefficient of V 11.772 12.618 12.880 12.133 12.158 12.248 8.802 9.704 9.857 9.476 9.864 10.882 Males Only N 184 241 182 174 229 230 183 240 182 170 228 174 Range (mm) 4.9 6.37 6.8 4.75 6.12 9.37 4.225 5.34 5.78 3.53 5.145 5.165 Min (mm) 8.2 9.25 9.6 7.75 9.13 10.75 7.65 8.7 8.22 6.5 7.55 7.95 Max (mm) 13.1 15.62 16.4 12.5 15.25 20.12 11.875 14.04 14 10.03 12.695 13.115 Mean (mm) 10.812 12.869 13.388 10.532 12.596 16.037 9.794 11.527 11.640 8.399 10.220 10.679 Standard Error 0.076 0.083 0.112 0.074 0.080 0.104 0.051 0.054 0.071 0.050 0.052 0.069 Standard Deviation 1.029 1.287 1.516 0.980 1.212 1.572 0.687 0.841 0.960 0.648 0.787 0.905 Sample Variance 1.058 1.655 2.297 0.960 1.468 2.470 0.471 0.707 0.922 0.419 0.620 0.820 Coefficient of V 9.513 9.997 11.320 9.303 9.619 9.801 7.011 7.292 8.251 7.711 7.704 8.477 1Molar traits are defined in Appendix 1A. 137 Table R. Scaled Molar Variation in Papio hamadryas, by trait1 UM1md UM2md UM3md UM1bl UM2bl UM3bl LM1md LM2md LM3md LM1bl LM2bl LM3bl Papio hamadryas Pooled Sex N 316 379 304 300 361 347 314 380 300 295 360 288 Range 0.317 0.399 0.308 0.390 0.374 0.501 0.226 0.252 0.245 0.181 0.296 0.203 Min 0.823 0.930 1.022 0.764 0.925 1.092 0.777 0.853 0.895 0.651 0.759 0.851 Max 1.140 1.329 1.330 1.155 1.299 1.592 1.002 1.105 1.140 0.832 1.055 1.054 Mean 0.953 1.124 1.163 0.922 1.097 1.393 0.864 1.001 1.014 0.740 0.887 0.932 Standard Error 0.003 0.004 0.004 0.003 0.004 0.005 0.002 0.002 0.003 0.002 0.002 0.002 Standard Deviation 0.050 0.072 0.063 0.049 0.069 0.088 0.034 0.043 0.045 0.032 0.045 0.036 Sample Variance 0.002 0.005 0.004 0.002 0.005 0.008 0.001 0.002 0.002 0.001 0.002 0.001 Coefficient of V 5.206 6.393 5.415 5.362 6.295 6.284 3.970 4.311 4.417 4.351 5.032 3.881 Females Only N 132 138 122 126 132 117 131 140 118 125 132 114 Range 0.308 0.325 0.284 0.263 0.352 0.401 0.208 0.204 0.195 0.181 0.195 0.173 Min 0.832 1.003 1.022 0.780 0.947 1.192 0.795 0.901 0.913 0.651 0.803 0.851 Max 1.140 1.329 1.306 1.043 1.299 1.592 1.002 1.105 1.107 0.832 0.998 1.024 Mean 0.963 1.149 1.156 0.923 1.117 1.417 0.872 1.010 1.007 0.747 0.895 0.929 Standard Error 0.005 0.006 0.006 0.005 0.006 0.007 0.003 0.003 0.004 0.003 0.003 0.003 Standard Deviation 0.056 0.069 0.063 0.057 0.063 0.081 0.036 0.039 0.041 0.031 0.040 0.035 Sample Variance 0.003 0.005 0.004 0.003 0.004 0.007 0.001 0.002 0.002 0.001 0.002 0.001 Coefficient of V 5.808 5.982 5.437 6.194 5.669 5.713 4.139 3.888 4.101 4.210 4.486 3.796 Males Only N 184 241 182 174 229 230 183 240 182 170 228 174 Range 0.302 0.346 0.303 0.390 0.350 0.471 0.165 0.251 0.245 0.166 0.296 0.189 Min 0.823 0.930 1.027 0.764 0.925 1.092 0.777 0.853 0.895 0.666 0.759 0.865 Max 1.125 1.276 1.330 1.155 1.275 1.563 0.942 1.104 1.140 0.832 1.055 1.054 Mean 0.946 1.109 1.168 0.921 1.086 1.381 0.859 0.995 1.018 0.735 0.882 0.933 Standard Error 0.003 0.004 0.005 0.003 0.005 0.006 0.002 0.003 0.003 0.002 0.003 0.003 Standard Deviation 0.043 0.070 0.063 0.043 0.070 0.088 0.032 0.044 0.046 0.032 0.046 0.037 Sample Variance 0.002 0.005 0.004 0.002 0.005 0.008 0.001 0.002 0.002 0.001 0.002 0.001 Coefficient of V 4.587 6.273 5.377 4.682 6.429 6.404 3.734 4.455 4.565 4.349 5.260 3.932 1 Scaled data has been adjusted to correct for body size, where adjusted data is “trait/geometric mean of individual=scaled trait”. 138 Table S. Unscaled Molar Variation in Theropithecus gelada, by trait1 UM1md UM2md UM3md UM1bl UM2bl UM3bl LM1md LM2md LM3md LM1bl LM2bl LM3bl Theropithecus gelada Pooled Sex N 51 53 45 50 57 52 50 53 46 50 54 49 Range (mm) 4.23 4.1 3.75 3.74 4.53 4.53 2.77 3.225 3.7 1.64 2.13 2.88 Min (mm) 8.27 10.6 11.25 7.76 10.1 14.1 7.86 9.275 9.18 6.735 8 8.37 Max (mm) 12.5 14.7 15 11.5 14.63 18.63 10.63 12.5 12.88 8.375 10.13 11.25 Mean (mm) 10.422 12.726 13.318 9.925 12.402 16.070 9.086 10.713 11.122 7.703 9.154 9.597 Standard Error 0.119 0.142 0.140 0.125 0.144 0.134 0.076 0.100 0.135 0.054 0.069 0.084 Standard Deviation 0.849 1.034 0.938 0.886 1.088 0.963 0.537 0.730 0.918 0.383 0.510 0.591 Sample Variance 0.721 1.068 0.879 0.785 1.184 0.928 0.288 0.533 0.842 0.147 0.260 0.349 Coefficient of V 8.150 8.121 7.040 8.925 8.773 5.995 5.906 6.815 8.250 4.970 5.570 6.159 Females Only N 14 17 12 14 18 16 13 17 12 14 17 12 Range (mm) 2.1 2.22 2.25 2.65 2.83 2.13 1.25 1.33 1.625 1.47 1.205 1.45 Min (mm) 8.27 10.6 11.25 7.76 10.1 14.1 7.86 9.54 9.495 6.735 8.3 8.37 Max (mm) 10.37 12.82 13.5 10.41 12.93 16.23 9.11 10.87 11.12 8.205 9.505 9.82 Mean (mm) 9.636 11.799 12.319 9.001 11.381 15.287 8.609 10.245 10.342 7.359 8.787 9.214 Standard Error 0.153 0.160 0.174 0.204 0.168 0.140 0.106 0.094 0.153 0.094 0.091 0.121 Standard Deviation 0.571 0.658 0.602 0.764 0.713 0.560 0.381 0.388 0.531 0.353 0.373 0.420 Sample Variance 0.326 0.433 0.362 0.583 0.509 0.314 0.145 0.151 0.282 0.125 0.139 0.177 Coefficient of V 5.929 5.580 4.883 8.486 6.267 3.665 4.429 3.791 5.136 4.798 4.248 4.562 Males Only N 37 36 33 36 39 36 37 36 34 36 37 37 Range (mm) 3.69 4.06 2.88 2.73 4.31 3.89 2.435 3.225 3.7 1.275 2.13 2.58 Min (mm) 8.81 10.64 12.12 8.77 10.32 14.74 8.195 9.275 9.18 7.1 8 8.67 Max (mm) 12.5 14.7 15 11.5 14.63 18.63 10.63 12.5 12.88 8.375 10.13 11.25 Mean (mm) 10.720 13.164 13.682 10.285 12.873 16.418 9.253 10.934 11.397 7.838 9.322 9.722 Standard Error 0.122 0.147 0.132 0.106 0.143 0.150 0.079 0.125 0.149 0.051 0.079 0.097 Standard Deviation 0.744 0.880 0.758 0.638 0.892 0.902 0.482 0.753 0.869 0.305 0.478 0.589 Sample Variance 0.553 0.774 0.574 0.407 0.796 0.813 0.233 0.566 0.755 0.093 0.228 0.347 Coefficient of V 6.938 6.682 5.537 6.201 6.930 5.493 5.211 6.883 7.622 3.888 5.123 6.058 1Molar traits are defined in Appendix 1A. 139 Table T. Scaled Molar Variation in Theropithecus gelada, by trait1 UM1md UM2md UM3md UM1bl UM2bl UM3bl LM1md LM2md LM3md LM1bl LM2bl LM3bl Theropithecus gelada Pooled Sex N 51 53 45 50 57 52 50 53 46 50 54 49 Range 0.247 0.362 0.245 0.357 0.350 0.292 0.108 0.184 0.207 0.129 0.173 0.187 Min 0.850 0.981 1.098 0.763 0.950 1.327 0.786 0.880 0.904 0.671 0.761 0.799 Max 1.097 1.343 1.343 1.121 1.300 1.619 0.894 1.064 1.111 0.800 0.933 0.987 Mean 0.967 1.174 1.225 0.923 1.150 1.483 0.844 0.988 1.021 0.718 0.848 0.885 Standard Error 0.008 0.009 0.008 0.009 0.011 0.010 0.004 0.006 0.007 0.004 0.005 0.005 Standard Deviation 0.054 0.068 0.055 0.063 0.080 0.071 0.030 0.045 0.047 0.029 0.036 0.036 Sample Variance 0.003 0.005 0.003 0.004 0.006 0.005 0.001 0.002 0.002 0.001 0.001 0.001 Coefficient of V 5.599 5.821 4.526 6.831 6.997 4.787 3.519 4.576 4.593 4.061 4.285 4.027 Females Only N 14 17 12 14 18 16 13 17 12 14 17 12 Range 0.228 0.337 0.206 0.357 0.346 0.241 0.085 0.147 0.110 0.073 0.140 0.112 Min 0.869 0.981 1.098 0.763 0.950 1.327 0.805 0.910 0.951 0.698 0.777 0.848 Max 1.097 1.318 1.304 1.121 1.296 1.568 0.890 1.056 1.061 0.771 0.918 0.960 Mean 0.956 1.146 1.206 0.893 1.113 1.476 0.857 0.994 1.012 0.729 0.860 0.901 Standard Error 0.017 0.021 0.018 0.024 0.024 0.019 0.007 0.011 0.011 0.006 0.012 0.008 Standard Deviation 0.063 0.088 0.061 0.091 0.103 0.077 0.024 0.043 0.037 0.023 0.048 0.026 Sample Variance 0.004 0.008 0.004 0.008 0.011 0.006 0.001 0.002 0.001 0.001 0.002 0.001 Coefficient of V 6.541 7.703 5.068 10.172 9.212 5.224 2.753 4.364 3.658 3.139 5.526 2.919 Males Only N 37 36 33 36 39 36 37 36 34 36 37 37 Range 0.225 0.258 0.217 0.199 0.275 0.277 0.108 0.184 0.207 0.129 0.173 0.187 Min 0.850 1.085 1.126 0.846 1.025 1.342 0.786 0.880 0.904 0.671 0.761 0.799 Max 1.075 1.343 1.343 1.045 1.300 1.619 0.894 1.064 1.111 0.800 0.933 0.987 Mean 0.972 1.187 1.232 0.934 1.167 1.486 0.839 0.985 1.025 0.714 0.843 0.880 Standard Error 0.008 0.009 0.009 0.007 0.010 0.011 0.005 0.008 0.009 0.005 0.005 0.006 Standard Deviation 0.051 0.053 0.053 0.045 0.062 0.069 0.030 0.046 0.050 0.030 0.029 0.037 Sample Variance 0.003 0.003 0.003 0.002 0.004 0.005 0.001 0.002 0.002 0.001 0.001 0.001 Coefficient of V 5.239 4.472 4.261 4.808 5.350 4.644 3.634 4.708 4.880 4.265 3.445 4.205 1 Scaled data has been adjusted to correct for body size, where adjusted data is “trait/geometric mean of individual=scaled trait”. 140 Table U. Unscaled Molar Variation in Macaca fascicularis, by trait1 UM1md UM2md UM3md UM1bl UM2bl UM3bl LM1md LM2md LM3md LM1bl LM2bl LM3bl Macaca fascicularis Pooled Sex N 61 61 60 60 61 60 61 61 59 59 60 60 Range (mm) 2.2 2.44 3.05 2.49 2.69 4.38 1.615 2.305 2.43 1.685 1.605 1.75 Min (mm) 5.3 5.86 5.32 5.13 5.81 6.12 5.005 5.445 5.07 4.165 4.895 4.56 Max (mm) 7.5 8.3 8.37 7.62 8.5 10.5 6.62 7.75 7.5 5.85 6.5 6.31 Mean (mm) 6.145 7.022 6.710 6.137 7.089 8.369 5.900 6.667 6.282 4.851 5.669 5.472 Standard Error 0.061 0.071 0.076 0.059 0.067 0.113 0.051 0.063 0.077 0.048 0.051 0.059 Standard Deviation 0.478 0.558 0.591 0.457 0.524 0.877 0.396 0.492 0.588 0.372 0.391 0.456 Sample Variance 0.228 0.311 0.349 0.209 0.275 0.769 0.157 0.242 0.346 0.138 0.153 0.208 Coefficient of V 7.773 7.945 8.807 7.453 7.397 10.477 6.709 7.382 9.367 7.664 6.904 8.338 Females Only N 29 29 28 28 29 28 29 29 27 27 28 28 Range (mm) 1.9 2.44 2.18 1.57 1.99 3.13 1.495 2.055 2.18 1.685 1.605 1.435 Min (mm) 5.3 5.86 5.32 5.13 5.81 6.12 5.005 5.445 5.07 4.165 4.895 4.56 Max (mm) 7.2 8.3 7.5 6.7 7.8 9.25 6.5 7.5 7.25 5.85 6.5 5.995 Mean (mm) 5.988 6.808 6.400 5.909 6.813 7.868 5.751 6.433 5.967 4.684 5.463 5.193 Standard Error 0.086 0.100 0.095 0.067 0.088 0.161 0.076 0.093 0.111 0.069 0.068 0.076 Standard Deviation 0.463 0.541 0.504 0.353 0.473 0.850 0.408 0.503 0.575 0.360 0.359 0.404 Sample Variance 0.214 0.293 0.254 0.125 0.223 0.722 0.167 0.253 0.330 0.130 0.129 0.164 Coefficient of V 7.729 7.946 7.868 5.980 6.938 10.799 7.098 7.826 9.634 7.686 6.576 7.787 Males Only N 32 32 32 32 32 32 32 32 32 32 32 32 Range (mm) 2.11 1.9 2.22 2.47 1.87 2.73 1.335 1.765 1.96 1.465 1.255 1.42 Min (mm) 5.39 6.35 6.15 5.15 6.63 7.77 5.285 5.985 5.54 4.22 5.115 4.89 Max (mm) 7.5 8.25 8.37 7.62 8.5 10.5 6.62 7.75 7.5 5.685 6.37 6.31 Mean (mm) 6.288 7.216 6.982 6.337 7.339 8.807 6.035 6.880 6.547 4.993 5.849 5.716 Standard Error 0.080 0.090 0.094 0.079 0.078 0.113 0.059 0.067 0.081 0.057 0.058 0.062 Standard Deviation 0.452 0.507 0.530 0.449 0.441 0.640 0.336 0.377 0.460 0.324 0.327 0.349 Sample Variance 0.204 0.257 0.281 0.201 0.194 0.409 0.113 0.142 0.212 0.105 0.107 0.122 Coefficient of V 7.186 7.019 7.588 7.082 6.007 7.263 5.572 5.482 7.029 6.490 5.592 6.113 1Molar traits are defined in Appendix 1A. 141 Table V. Scaled Molar Variation in Macaca fascicularis, by trait1 UM1md UM2md UM3md UM1bl UM2bl UM3bl LM1md LM2md LM3md LM1bl LM2bl LM3bl Macaca fascicularis Pooled Sex N 61 61 60 60 61 60 61 61 59 59 60 60 Range 0.162 0.170 0.290 0.157 0.195 0.474 0.158 0.162 0.240 0.140 0.109 0.181 Min 0.893 1.021 0.929 0.887 1.013 1.076 0.855 0.954 0.846 0.699 0.837 0.785 Max 1.055 1.191 1.220 1.044 1.208 1.551 1.013 1.116 1.086 0.840 0.946 0.967 Mean 0.975 1.114 1.066 0.973 1.125 1.329 0.937 1.058 0.996 0.769 0.899 0.870 Standard Error 0.005 0.005 0.006 0.005 0.005 0.011 0.004 0.004 0.006 0.003 0.004 0.005 Standard Deviation 0.035 0.039 0.049 0.035 0.038 0.083 0.032 0.032 0.044 0.026 0.029 0.037 Sample Variance 0.001 0.002 0.002 0.001 0.001 0.007 0.001 0.001 0.002 0.001 0.001 0.001 Coefficient of V 3.630 3.526 4.621 3.583 3.378 6.246 3.390 3.011 4.410 3.329 3.247 4.272 Females Only N 29 29 28 28 29 28 29 29 27 27 28 28 Range 0.139 0.124 0.229 0.137 0.195 0.353 0.113 0.162 0.235 0.096 0.106 0.181 Min 0.916 1.067 0.929 0.907 1.013 1.076 0.899 0.954 0.846 0.744 0.837 0.785 Max 1.055 1.191 1.158 1.044 1.208 1.429 1.013 1.116 1.081 0.840 0.943 0.967 Mean 0.987 1.122 1.061 0.974 1.124 1.302 0.948 1.061 0.986 0.771 0.900 0.861 Standard Error 0.006 0.006 0.009 0.007 0.008 0.018 0.005 0.007 0.009 0.004 0.005 0.008 Standard Deviation 0.033 0.031 0.049 0.038 0.044 0.093 0.030 0.038 0.049 0.023 0.027 0.040 Sample Variance 0.001 0.001 0.002 0.001 0.002 0.009 0.001 0.001 0.002 0.001 0.001 0.002 Coefficient of V 3.390 2.754 4.644 3.864 3.901 7.165 3.121 3.540 4.919 2.931 3.005 4.662 Males Only N 32 32 32 32 32 32 32 32 32 32 32 32 Range 0.132 0.166 0.262 0.136 0.133 0.315 0.133 0.102 0.160 0.119 0.101 0.125 Min 0.893 1.021 0.957 0.887 1.056 1.236 0.855 0.999 0.926 0.699 0.845 0.811 Max 1.025 1.187 1.220 1.023 1.189 1.551 0.987 1.101 1.086 0.818 0.946 0.936 Mean 0.965 1.108 1.071 0.972 1.127 1.352 0.927 1.056 1.005 0.766 0.898 0.878 Standard Error 0.006 0.008 0.009 0.006 0.006 0.012 0.005 0.005 0.007 0.005 0.006 0.006 Standard Deviation 0.034 0.045 0.050 0.033 0.033 0.066 0.031 0.026 0.038 0.028 0.031 0.033 Sample Variance 0.001 0.002 0.002 0.001 0.001 0.004 0.001 0.001 0.001 0.001 0.001 0.001 Coefficient of V 3.545 4.060 4.623 3.378 2.885 4.866 3.297 2.474 3.824 3.657 3.492 3.758 1 Scaled data has been adjusted to correct for body size, where adjusted data is “trait/geometric mean of individual=scaled trait”. 142 Table W. Unscaled Molar Variation in Macaca nemestrina, by trait1 UM1md UM2md UM3md UM1bl UM2bl UM3bl LM1md LM2md LM3md LM1bl LM2bl LM3bl Macaca nemestrina Pooled Sex N 49 49 49 49 49 49 49 49 49 49 49 49 Range (mm) 2.07 2.07 3.59 1.75 1.97 4.62 2.19 2.985 3.515 1.8 1.725 2.545 Min (mm) 6.43 7.55 6.91 6.87 7.65 8.5 6.06 6.635 5.985 5.26 6.145 5.825 Max (mm) 8.5 9.62 10.5 8.62 9.62 13.12 8.25 9.62 9.5 7.06 7.87 8.37 Mean (mm) 7.580 8.723 8.824 7.563 8.606 11.038 7.341 8.474 8.457 6.031 7.162 7.381 Standard Error 0.066 0.065 0.107 0.060 0.066 0.141 0.066 0.078 0.103 0.059 0.061 0.089 Standard Deviation 0.461 0.458 0.752 0.419 0.463 0.985 0.463 0.545 0.721 0.411 0.429 0.621 Sample Variance 0.212 0.210 0.565 0.176 0.214 0.971 0.214 0.297 0.520 0.169 0.184 0.386 Coefficient of V 6.082 5.255 8.519 5.544 5.376 8.928 6.302 6.430 8.527 6.812 5.992 8.418 Females Only N 23 23 23 23 23 23 23 23 23 23 23 23 Range (mm) 1.82 1.95 3.21 0.87 1.47 4.62 2.19 2.485 3.515 1.675 1.475 2.425 Min (mm) 6.43 7.55 6.91 7 7.65 8.5 6.06 6.635 5.985 5.26 6.145 5.825 Max (mm) 8.25 9.5 10.12 7.87 9.12 13.12 8.25 9.12 9.5 6.935 7.62 8.25 Mean (mm) 7.413 8.539 8.465 7.400 8.385 10.530 7.217 8.295 8.180 5.887 6.954 7.123 Standard Error 0.094 0.100 0.144 0.063 0.091 0.196 0.114 0.128 0.173 0.083 0.095 0.131 Standard Deviation 0.449 0.480 0.690 0.300 0.434 0.938 0.545 0.614 0.830 0.396 0.457 0.629 Sample Variance 0.201 0.231 0.476 0.090 0.188 0.881 0.298 0.378 0.688 0.157 0.209 0.396 Coefficient of V 6.051 5.624 8.154 4.053 5.177 8.912 7.558 7.408 10.144 6.725 6.571 8.831 Males Only N 26 26 26 26 26 26 26 26 26 26 26 26 Range (mm) 1.63 1.25 2.75 1.75 1.37 3.37 1.27 1.87 1.88 1.565 1.06 2.06 Min (mm) 6.87 8.37 7.75 6.87 8.25 9.75 6.85 7.75 7.62 5.495 6.81 6.31 Max (mm) 8.5 9.62 10.5 8.62 9.62 13.12 8.12 9.62 9.5 7.06 7.87 8.37 Mean (mm) 7.727 8.886 9.142 7.707 8.802 11.488 7.451 8.633 8.703 6.157 7.345 7.608 Standard Error 0.084 0.074 0.130 0.090 0.079 0.157 0.069 0.084 0.100 0.076 0.061 0.103 Standard Deviation 0.428 0.377 0.665 0.461 0.401 0.801 0.350 0.427 0.509 0.388 0.309 0.527 Sample Variance 0.183 0.142 0.442 0.212 0.160 0.642 0.122 0.182 0.259 0.150 0.095 0.278 Coefficient of V 5.533 4.238 7.274 5.981 4.551 6.973 4.697 4.941 5.847 6.300 4.203 6.932 1Molar traits are defined in Appendix 1A. 143 Table X. Scaled Molar Variation in Macaca nemestrina, by trait1 UM1md UM2md UM3md UM1bl UM2bl UM3bl LM1md LM2md LM3md LM1bl LM2bl LM3bl Macaca nemestrina Pooled Sex N 49 49 49 49 49 49 49 49 49 49 49 49 Range 0.134 0.144 0.265 0.180 0.170 0.393 0.138 0.209 0.273 0.164 0.126 0.149 Min 0.869 1.029 1.015 0.872 1.003 1.123 0.835 0.969 0.875 0.678 0.821 0.846 Max 1.003 1.173 1.280 1.052 1.173 1.516 0.974 1.179 1.148 0.842 0.947 0.995 Mean 0.947 1.090 1.101 0.945 1.075 1.377 0.917 1.058 1.055 0.753 0.894 0.921 Standard Error 0.004 0.005 0.007 0.005 0.005 0.010 0.005 0.006 0.007 0.005 0.004 0.005 Standard Deviation 0.029 0.032 0.046 0.035 0.035 0.072 0.035 0.041 0.048 0.032 0.026 0.038 Sample Variance 0.001 0.001 0.002 0.001 0.001 0.005 0.001 0.002 0.002 0.001 0.001 0.001 Coefficient of V 3.029 2.960 4.186 3.661 3.247 5.210 3.763 3.867 4.507 4.312 2.945 4.104 Females Only N 23 23 23 23 23 23 23 23 23 23 23 23 Range 0.068 0.126 0.145 0.177 0.170 0.382 0.108 0.148 0.255 0.164 0.122 0.141 Min 0.917 1.047 1.015 0.875 1.003 1.123 0.865 0.975 0.875 0.678 0.821 0.854 Max 0.984 1.173 1.161 1.052 1.173 1.505 0.974 1.123 1.130 0.842 0.943 0.995 Mean 0.952 1.098 1.086 0.952 1.078 1.352 0.927 1.065 1.049 0.757 0.894 0.914 Standard Error 0.004 0.007 0.007 0.008 0.008 0.017 0.007 0.008 0.012 0.008 0.006 0.008 Standard Deviation 0.020 0.032 0.035 0.039 0.037 0.081 0.033 0.037 0.057 0.039 0.028 0.039 Sample Variance 0.000 0.001 0.001 0.002 0.001 0.007 0.001 0.001 0.003 0.001 0.001 0.002 Coefficient of V 2.069 2.884 3.188 4.145 3.427 5.978 3.543 3.496 5.457 5.112 3.089 4.291 Males Only N 26 26 26 26 26 26 26 26 26 26 26 26 Range 0.134 0.126 0.241 0.113 0.131 0.239 0.137 0.209 0.162 0.102 0.095 0.148 Min 0.869 1.029 1.039 0.872 1.011 1.277 0.835 0.969 0.986 0.706 0.852 0.846 Max 1.003 1.156 1.280 0.986 1.142 1.516 0.972 1.179 1.148 0.808 0.947 0.994 Mean 0.941 1.083 1.113 0.939 1.073 1.399 0.908 1.052 1.060 0.750 0.895 0.926 Standard Error 0.007 0.006 0.010 0.006 0.007 0.011 0.007 0.009 0.007 0.005 0.005 0.007 Standard Deviation 0.034 0.032 0.052 0.029 0.034 0.056 0.034 0.044 0.037 0.026 0.026 0.036 Sample Variance 0.001 0.001 0.003 0.001 0.001 0.003 0.001 0.002 0.001 0.001 0.001 0.001 Coefficient of V 3.645 2.938 4.643 3.078 3.125 3.972 3.768 4.160 3.518 3.485 2.870 3.912 1 Scaled data has been adjusted to correct for body size, where adjusted data is “trait/geometric mean of individual=scaled trait”. 144 APPENDIX C CRANIODENTAL ANALYSES OF VARIANCE 145 146 147 148 149 150 151 152 153 154 APPENDIX D POSTCRANIAL SKELETAL MEASUREMENT PROTOCOL The focus of this protocol is on homologous anatomical landmarks between adult catarrhine taxa, and on equivalent measures throughout the epiphyseal fusion of the sample. Equivalent measures are provided, especially where data was collected from other sources; complete references for equivalent measurements are located at end of measurement list and numbered in brackets throughout. All measures were collected using sliding calipers or osteometric boards; all measures taken on the left if possible. Humerus 1. hLEN1. Humeral Length 1. Linear distance from greater tuberosity to capitulum, in anterior view. This measure is typically the longest humeral measure in old world monkeys; in hominoids it is usually hLEN2 (42). Measured using external jaws of sliding calipers; may require osteometric board if sufficiently large. Equivalent to the variables HLGTCP (PRIMO [1]) and HLGT (Frost [2]). 2. hLEN2. Humeral Length 2. Linear distance from humeral head to capitulum, in anterior view. This measure tends to be the longest humeral length in hominoids, but in old world monkeys it is usually hLEN1 (41). Measured using external jaws of sliding calipers; may require osteometric board if sufficiently large. Equivalent to the variables HLHDCP [1] and HLHD [2]. 155 3. hLEN3. Humeral Length 3. Maximum linear distance, proximal limit of humerus to distal limit, in anterior view. This measure gives the longest possible proximodistal measure of the humerus. Measured using external jaws of sliding calipers; may require osteometric board if sufficiently large. Equivalent to the variable HumMaxLng (Terry [3]). 4. hPML. Humeral Proximal End Mediolateral Breadth. Mediolateral linear distance of the proximal end in superior view, including the tuberosities, with the deltoid insertion as the lateralmost landmark. Measured using external jaws of sliding calipers. Equivalent to the variables HHDWTR [1], HHWTR [2], and HumProxEpiBr [3]. 5. hPAP. Humeral Proximal End Anteroposterior Breadth. Anteroposterior linear distance of the proximal end, including tuberosities, with the bicipital groove as the anteriormost landmark, in superior view. Measured using external jaws of sliding calipers. Equivalent to the variables HHDWAP [1], HHWAP [2], and HPAP (Guthrie [4]). 6. hHEAP. Humeral Head Anteroposterior Breadth. Anteroposterior linear distance of the articular surface of the head, in medial view. Measured using external jaws of sliding calipers. Equivalent to the variables HHDWAP (head only ap) [1] and HHWAP (head only) [2]. 7. hHEML. Humeral Head Mediolateral Breadth. Mediolateral linear distance of the articular surface of the head, in medial view. Measured using external jaws of sliding calipers. Equivalent to the variables HHDWTR (head only tr) [1], HHWTR (head only) [2], and HumMxVertHeadDia [3]. 156 8. hLEN4. Humeral Length 4. Length from proximal limit of the brachioradialis flange to capitulum, in anterior view. Measured using external jaws of sliding calipers. Equivalent to the variables HBRFLC [1] and HBRCP [2]. 9. hDML. Humeral Distal End Mediolateral Breadth. Mediolateral linear distance from medial epicondyle to lateral epicondyle, in anterior view. Measured using external jaws of sliding calipers. Equivalent to the variables HDTRWX [1], HDWTR [2], HumDistEpiBr [3], and HDML [4]. 10. hDASML. Humeral Distal Articular Surface Breadth. Linear distance from medial limit of trochlea to lateral limit of capitulum, in anterior view. Measured using external jaws of sliding calipers. Equivalent to the variables HDTRWA [1], HDWA [2], and HDTA [4]. 11. hDHA. Humeral Harrison’s Breadth. Lateral epicondyle to medial limit of trochlea, in anterior view. Measured using external jaws of sliding calipers. Equivalent to the variables HDTRWH [1] and HDWH [2]. 12. hTRPD. Humeral Trochlear Flange Length. Proximodistal length of the trochlear flange, anterior view. Measured using external jaws of sliding calipers. Equivalent to the variables HDLENT [1] and HDTL [2]. 13. hTRML. Humeral Trochlear Mediolateral Breadth. Mediolateral linear distance of trochlea, in posterior view; from the medial aspect of the articular surface of the trochlea, measure transversely to the point where the three lines of the trochlea, capitulum, and humeral shaft meet on the lateral aspect of the trochlea. Measured using internal jaws of sliding calipers. Equivalent to the variables HDTRWT [1] and HDTTR [2]. 157 14. hDAP. Humeral Distal End Anteroposterior Breadth. Anteroposterior linear distance of the distal end, in inferior view. Measured using external jaws of sliding calipers. Equivalent to the variables HDAPWX [1] and HDAP [2]. Radius 15. rLEN1. Radial Length 1. Length from proximal articular surface of head to distal articular surface, in anterior view. External caliper jaw across head, aiming the point of the other jaw to the middle of the distal articular surface, with the bone flat on a tabletop and parallel to the caliper beam. Or, this measure can be taken with an osteometric board with the styloid oriented off the edge of the measuring plane. Equivalent to the variable LENFUN [1]. 16. rLEN2. Radial Length 2. Maximum linear distance of the total radius; proximal articular surface of head to styloid, in anterior view. External caliper jaw across head, aiming the point of the other jaw to the tip of the styloid process, with the bone flat on a tabletop and parallel to the caliper beam. Or, this measure can be taken with an osteometric board. Equivalent to the variables LENSTYL [1], LENGTH [2], and RadMxLng [3]. 17. rPAP. Radial Head Anteroposterior Breadth. Maximum anteroposterior diameter, in superior view. Measured using external jaws of sliding calipers. Equivalent to the variables HDIAM [1], MAXDIAM [2], RadMxHeadDia [3], and RHAP [4]. 18. rPML. Radial Head Mediolateral Breadth. Maximum mediolateral diameter, in superior view. Measured using external jaws of sliding calipers. Equivalent to the variables HPERP [1], PERP [2], and RHML [4]. 158 19. rNE1. Radial Neck Length 1. The proximodistal linear distance of the radial neck in medial view; from the distal limit of head to the proximal limit of tuberosity. Measured using internal jaws of sliding calipers. Equivalent to the variable NECK [1]. 20. rNE2. Radial Neck Length 2. The distal limit of the head to the mid-radial tuberosity in medial view. Measured using internal jaws of sliding calipers 21. rNE3. Radial Neck Length 3. Distance from mid-radial tuberosity to proximal limit of the head, in medial view. Measured using external jaws of sliding calipers. Equivalent to the variables NECKLEV [1] and TUBER [2]. 22. rTUB. Radial Tuberosity Length. This measure is proximodistal linear distance of radial tuberosity, in medial view; gives a functional assessment of the biceps brachii insertion point. Measured using internal jaws of sliding calipers. 23. rDML. Radial Distal End Mediolateral Breadth. Mediolateral linear distance of the distal end, in inferior view; from the flat radial notch to other side. Measured using external jaws of sliding calipers. Equivalent to the variables DTR [1], DISTML [2], and RDML [3]. 24. rDAP. Radial Distal End Anteroposterior Breadth. This measure is the anteroposterior linear distance of the distal end, in inferior view. Measured using external jaws of sliding calipers. Equivalent to the variables DAP [1], DISTAP [2], and RDAP [3]. Femur 159 25. fLEN1. Femur Length 1. Linear distance from distal end across condyles to greater trochanter, in anterior view. Measured using external jaws of calipers, or with osteometric board flat across distal end. Equivalent to the variables LENGTR [1] and FemTrocLng [3]. 26. fLEN2. Femur Length 2. Linear distance from distal end across condyles to the femoral head, in anterior view. Measured using external jaws of calipers, or with osteometric board flat across distal end. Equivalent to the variables LENHD [1] and FemMxLng [3]. 27. fPML. Femoral Proximal End Mediolateral Breadth. Mediolateral linear distance of the proximal end, in anterior view. Measured using external jaws. Equivalent to the variable MAXML [1]. 28. fMLLESS. Lesser Trochanter Mediolateral Breadth. Mediolateral breadth at lesser trochanter, in anterior view. This is more precisely measuring mediolateral midshaft breadth at the lesser trochanter, not necessarily the depth the lesser trochanter imparts to the diaphysis; the latter varies by taxon and individual enthesial robusticity. Among cercopithecines, the lesser trochanter tends to extend laterally; in hominoids, it tends to extend posteriorly. Measure can include lesser trochanter, but the external jaws of sliding calipers should be flat across the medial and lateral portions of the diaphysis as possible. 29. fGT. Proximal Projection of Greater Trochanter. Projection of greater trochanter above the femoral neck, in anterior view. This measure varies substantially by taxa and is reflective of rotational ability around the hip. Best measured using the sliding caliper’s depth measuring rod. Equivalent to the variable GTRPROJ [1]. 160 30. fAPLESS. Lesser Trochanter Anteroposterior Breadth. Anteroposterior linear distance of the lesser trochanter, in medial view. This is more precisely measuring mid-shaft at lesser trochanter, not the depth the lesser trochanter imparts to the diaphysis; the latter varies by taxon and individual enthesial robusticity. Among cercopithecines, the lesser trochanter tends to extend laterally; in hominoids, it tends to extend posteriorly. Measured including lesser trochanter, but with external jaws of sliding calipers still flat across the anterior portion of the diaphysis. 31. fHEPD. Femoral Head Proximodistal Length. Proximodistal linear distance of femoral head articular surface, in medial view. Measured using external jaws of sliding calipers. Equivalent to the variables HEADPD [1], HPD [2], and FemHeadSIDia [3]. 32. fHEML. Femoral Head Mediolateral Breadth. Mediolateral linear distance from fovea capitis to lateral limit of femoral head articular surface, in anterior view. Measured using internal jaws of sliding calipers, avoiding the greater trochanter while measuring the medial limit of the femoral head. Equivalent to the variables HEADML [1] and HML [2]. 33. fHEAP. Femoral Head Anteroposterior Breadth. Anteroposterior linear distance of femoral head articular surface, in medial view. Measured using external jaws of sliding calipers. Equivalent to the variables HEADAP [1], HAP [2], and FemHeadHzDia [3]. 161 34. fPSPD. Patellar Surface Proximodistal Length. Distal limit of patellar sulcus to proximal limit of articular surface, in anterior view. Measured using external jaws of sliding calipers. Equivalent to the variable GRVAP [1]. 35. fPSML. Patellar Surface Mediolateral Breadth. Distal linear distance from medial patellar ridge to lateral ridge, in anterior view; caliper points are positioned in the midline of the proximodistal distance of the patellar ridge. Measured using external jaws of sliding calipers. 36. fDML. Femoral Bi-Epicondylar Mediolateral Breadth. Linear distance from medial limit of medial epicondyle to lateral limit of lateral epicondyle, in anterior view. Measured using external jaws of sliding calipers. Equivalent to the variables BICML [1], DML [2], and FemEpicBr [3]. 37. fDAP. Femoral Distal End Anteroposterior Breadth. Anteroposterior linear distance of the distal end, in inferior view. Measured using external jaws of sliding calipers. Equivalent to the variables DISTAP [1], DAP [2], and FemAPLatCond [3]. 38. fCPD. Femoral Condylar Proximodistal Length. Proximodistal linear distance of condyles, in posterior view. Measured using external jaws of sliding calipers. Equivalent to the variable CONDPD [1]. 39. fCML. Femoral Condylar Mediolateral Breadth. Mediolateral linear distance of condyles at mid-point, in posterior view. Measured using external jaws of sliding calipers. Equivalent to the variable FemBiConBr [3]. 162 40. fICGPD. Femoral Intercondylar Groove Proximodistal Length. Proximodistal linear distance of the intercondylar groove, in posterior view. Measured using internal jaws of sliding calipers. 41. fICGML. Femoral Intercondylar Groove Mediolateral Breadth. Mediolateral linear distance of the intercondylar groove, in posterior view. Measured using internal jaws of sliding calipers. Tibia 42. tLEN1. Tibia Length 1. Linear distance from intercondylar tubercles to distal limit of medial malleolus, in anterior view. Measured using external jaws of sliding calipers. Equivalent to the variables LENMAL [2] and TibCondMalLng [3]. 43. tLEN2. Tibia Length 2. Linear distance from the intercondylar tubercles to the distal articular surface, in anterior view. Measured using external jaws of sliding calipers. Equivalent to the variables LENFAC [1] and LENFUN [2]. 44. tPML. Tibial Proximal End Mediolateral Breadth. Mediolateral linear distance of the proximal end, in superior view. Measured using external jaws of sliding calipers; tibial plateau should be parallel to the caliper beam. Equivalent to the variables BICONML [1], PRML [2], TibMaxBrProxEpi [3], TPML [4], and to the linear distances between 3D landmarks 7,13 (Turley [5]). 45. tPAP. Tibial Proximal End Anteroposterior Breadth. Anteroposterior linear distance of the proximal end, in superior view. Measured using external jaws of sliding calipers. Anterior lip of tibial plateau is guiding ridge for measurement, 163 and external jaw is placed there. The bone is then at an oblique angle relative to the caliper beam, is the plateau is tilted posteriorly. Equivalent to the variables PROXAP [1], PRAP [2], and TPAP [4]. 46. tLFAP. Tibial Lateral Condyle Anteroposterior Breadth. Anteroposterior linear distance of the lateral condyle, in superior view. Measured using external jaws of sliding calipers. Equivalent to the variables LFACAP [1], LFAC [2], TLCL [4], and the linear distance between the 3D landmarks 11,15 [5]. 47. tMFAP. Tibial Medial Condyle Anteroposterior Breadth. Anteroposterior linear distance of the medial condyle, in superior view. Measured using external jaws of sliding calipers. Equivalent to the variables MFACAP [1], MFAC [2], TMCL [4], and the linear distance between the 3D landmarks 1,5 [5]. 48. tLFML. Tibial Lateral Condyle Mediolateral Breadth. Mediolateral linear distance of the lateral condyle, in superior view. Measured using external jaws of sliding calipers. Equivalent to the variable TLCW [4]. 49. tMFML. Tibial Medial Condyle Mediolateral Breadth. Mediolateral linear distance of the medial condyle, in superior view. Measured using external jaws of sliding calipers. Equivalent to the variable TMCW [4]. 50. tDAP. Tibial Distal End Anteroposterior Breadth. Anteroposterior linear distance of the distal end, in inferior view. Measured using external jaws of sliding calipers. Equivalent to the variables DISTAP [1], DAP [2], and the linear distance between the 3D landmarks 23,27 [5]. 51. tDML. Tibial Distal End Mediolateral Breadth. Mediolateral linear distance of the distal end, in inferior view. Measured using external jaws of sliding calipers. 164 Equivalent to the variables DISTML [1], DML [2], TibMaxBrDistEpi [3], and TDML [4]. 52. tMMPD. Tibial Medial Malleolus Proximodistal Length. Proximodistal linear distance of medial malleolus, in anterior view. Measured using depth rod of sliding calipers. Equivalent to the variable TMMW [4]. 53. tDASML. Tibial Distal Articular Surface Mediolateral Breadth. Linear distance from lateral limit of medial malleolus to lateral limit of distal articular surface, in anterior view. Measured using internal jaws of sliding calipers. Equivalent to the variable TASW [4]. References and Acknowledgements [1] PRIMO (Primate Morphometrics Online), the NYCEP Primate Morphometric database, is a resource for researchers who use metrical (including 3D) data to study aspects of primate morphology and evolution. Some data for this project were downloaded from PRIMO, the NYCEP Primate Morphology Online database (http://primo.nycep.org). I thank Dr. Eric Delson and colleagues for access to these data. [2] Frost, S.R. Personal communication and sharing of his postcranial caliper data from various primate taxa. Data has appeared in publication, such as: Frost, S.R., 2014. Fossil Cercopithecidae of the Konso Formation. Konso-Gardula Research Project, 5, p.41. I thank Dr. Kieran McNulty and colleagues for access to these data. 165 [3] The Robert J. Terry Anatomical Skeletal Collection, housed at the National Museum of Natural History, offers public access to an osteometric database of the collection available here: https://anthropology.si.edu/cm/terry.htm. This database includes a protocol with additional citations listed below. I thank Collections Manager of the Terry Collection Dr. David Hunt, and colleagues, for continued public access to this data. [4] Guthrie, E.H. Personal communication and sharing of her postcranial caliper data from various primate taxa. Data has appeared in publication, such as: Guthrie, E.H., 2011. Functional morphology of the postcranium of Theropithecus brumpti (Primates: Cercopithecidae) (Doctoral dissertation, University of Oregon). I thank Dr. Emily Guthrie for access to these data. [5] Turley, K., Guthrie, E.H. and Frost, S.R., 2011. Geometric morphometric analysis of tibial shape and presentation among catarrhine taxa. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 294(2), pp.217-230. References from NMNH Terry Collection Standards Bass, W. M. (1995) Human Osteology. A Laboratory and Field Manual. Missouri Archaeological Society, Special Publication No. 2. Fourth edition. Columbia, Missouri. Buikstra, J. E. & Ubelaker, D. H. (eds.) (1994). Standards for Data Collection from Human Skeletal Remains. Arkansas Archaeological Survey Research Series 44. Hrdlička, A. (1939). Practical Anthropometry. The Wistar Institute of Anatomy and Biology, Philadelphia, Pennsylvania. 166 Martin, R. & Saller, K. (1957). Lehrbuch der Anthropologie. Vol. 1 and Vol. 2, Gustav Fisher Verlag, Stuttgart. Montagu, M. F. A. (1960). A Handbook of Anthropology. Charles C. Thomas, Springfield, Illinois. NMNH Physical Anthropology Laboratory Manual (1995). Repatriation Office, National Museum of Natural History, Smithsonian Institution, Washington D.C. Pearson, K. (1917). A study of the long bones of the English skeleton. I: The femur. University of London, University College, Department of Applied Statistics, Company Research, Memoirs, Biometric Series X, Chapters 1-4 (1917-1919). Trotter, M. & Gleser G. C. (1952). Estimation of stature from long bones of American Whites and Negroes. American Journal of Physical Anthropology 10: 463–514. Zoebeck, T. S. (1983). Postcraniometric Variation Among the Arikara. Unpublished Ph.D. Dissertation. University of Tennessee, Knoxville. 167 APPENDIX E POSTCRANIAL MEASURES OF VARIANCE Measures of variance are reported per individual linear bony measure, by bony element and subsample. Subsamples are grouped by species and sex. All samples are reported on unadjusted data, and data which has been adjusted by the geometric mean to control for differences due to absolute body size. Each subsection is ordered by taxon pairs: H. sapiens, P. troglodytes, P. hamadryas, T. gelada, M. fascicularis, and M. nemestrina. Where split sex measures of variance are reported, females are always listed first. 168 Humeral Measures of Variance, Pooled Sexes H omo sapiens, pooled sexes, humerus hLEN1 hLEN2 hLEN3 hPML hPAP hHEAP hHEML hLEN4 hDML hDASML hDHA hTRPD hTRML hDAP Count 18 18 18 18 18 18 18 18 18 18 18 18 18 18 Range 67.00 67.50 69.00 12.26 12.21 14.09 22.92 65.93 23.04 20.05 21.19 9.58 10.86 8.93 Minimum 268.00 273.50 276.50 43.13 40.40 36.28 29.15 83.29 48.47 33.96 37.32 19.11 20.91 22.25 Maximum 335.00 341.00 345.50 55.39 52.61 50.37 52.07 149.22 71.51 54.01 58.51 28.69 31.77 31.18 Mean 302.67 309.61 313.94 48.39 45.98 42.72 40.18 114.92 58.70 39.58 43.22 22.93 25.51 26.00 Standard Error 4.63 4.85 4.92 0.88 0.89 0.99 1.30 4.50 1.62 1.15 1.38 0.60 0.73 0.61 Standard Deviation 19.63 20.59 20.87 3.74 3.77 4.20 5.51 19.09 6.85 4.89 5.84 2.54 3.09 2.57 Sample Variance 385.53 423.81 435.73 14.00 14.20 17.67 30.31 364.34 46.96 23.88 34.07 6.46 9.55 6.63 CV 6.49 6.65 6.65 7.73 8.20 9.84 13.70 16.61 11.68 12.35 13.51 11.08 12.11 9.90 P an troglodytes, pooled sexes, humerus hLEN hLEN hLEN hPML hPA hHEAP hHEM hLEN hDML hDASM hDHA hTRP hTRM hDAP 1 2 3 P L 4 L D L Count 14 14 14 15 15 15 15 15 15 15 15 15 15 15 Range 69.5 73.5 77 11.96 10.19 10.31 12.74 30.31 17.99 10.2 12.42 11.77 7.21 6.95 Minimum 250 251 252 37.92 37.9 34.68 31.78 87.76 50.95 38.87 43.14 18.13 20.97 23.52 Maximum 319.5 324.5 329 49.88 48.09 44.99 44.52 118.07 68.94 49.07 55.56 29.9 28.18 30.47 Mean 294.0 296.6 299.6 0 4 4 43.73 42.82 39.53 37.65 102.6 8 60.65 43.69 48.64 22.64 23.71 27.50 Standard Error 5.1 5.29 5.39 0.82 0.88 0.81 0.81 2.31 1.34 0.75 0.84 0.88 0.53 0.48 Standard Deviation 19.10 19.81 20.18 3.19 3.40 3.14 3.13 8.96 5.18 2.92 3.24 3.42 2.06 1.86 Sample 365.0 392.3 407.0 Variance 0 2 9 10.18 11.53 9.83 9.82 80.23 26.80 8.55 10.47 11.68 4.23 3.45 CV 6.50 6.68 6.73 7.30 7.93 7.93 8.32 8.72 8.53 6.69 6.65 15.10 8.67 6.76 169 Humeral Measures of Variance, Pooled Sexes P apio hamadryas, pooled sexes, humerus hLEN1 hLEN2 hLEN3 hPML hPAP hHEAP hHEML hLEN4 hDML hDASML hDHA hTRPD hTRML hDAP Count 21 21 7 22 22 21 21 22 23 23 19 23 23 23 Range 72.72 71.64 39.33 12.42 11.51 9.99 11.16 43.09 16.1 11.22 16.19 9.39 8.99 9.34 Minimum 184.78 182 202.71 24.75 24.67 21.55 17.36 50.62 31.12 21.7 25.26 14.94 12.04 20.66 Maximum 257.5 253.64 242.04 37.17 36.18 31.54 28.52 93.71 47.22 32.92 41.45 24.33 21.03 30 Mean 220.02 217.95 225.86 31.19 31.34 26.43 24.38 68.23 38.91 28.26 34.23 20.08 15.98 25.35 Standard Error 4.48 4.53 4.59 0.79 0.76 0.74 0.67 2.03 0.98 0.74 0.94 0.61 0.55 0.63 Standard Deviation 20.55 20.76 12.14 3.71 3.54 3.40 3.07 9.53 4.70 3.57 4.08 2.92 2.64 3.04 Sample Variance 422.17 431.02 147.45 13.74 12.56 11.57 9.45 90.87 22.06 12.71 16.64 8.51 6.98 9.26 CV 9.34 9.53 5.38 11.89 11.31 12.87 12.61 13.97 12.07 12.62 11.92 14.53 16.53 12.00 T heropithecus gelada, pooled sexes, humerus hLEN hLEN hLEN hPML hPAP hHEA hHEM hLEN hDML hDASM hDHA hTRP hTRM hDAP 1 2 3 P L 4 L D L Count 13 13 4 12 13 9 9 13 13 13 10 13 13 13 Range 43.73 43.09 32.29 5.85 8.63 6.4 4.73 14.94 8.69 6.23 5.67 5.07 7 4.78 Minimum 161.3 161.3 8 1 169.5 22.57 23.87 21.49 18.13 47.56 27.23 19.17 24.85 14.72 10.52 18.7 Maximum 205.1 204.4 201.71 9 28.42 32.5 27.89 22.86 62.5 35.92 25.4 30.52 19.79 17.52 23.48 Mean 187.4 186.0 185.4 5 7 4 25.79 28.35 23.88 20.33 56.28 32.39 22.72 27.70 17.04 13.25 21.60 Standard Error 4.44 4.31 7.94 0.68 0.90 0.78 0.62 1.27 0.78 0.52 0.69 0.41 0.57 0.49 Standard Deviation 16.00 15.54 15.87 2.37 3.23 2.34 1.85 4.57 2.82 1.87 2.19 1.46 2.04 1.77 Sample 256.0 241.3 251.9 Variance 1 7 5 5.62 10.42 5.49 3.42 20.87 7.94 3.50 4.79 2.14 4.18 3.15 CV 8.54 8.35 8.56 9.19 11.38 9.81 9.09 8.12 8.70 8.23 7.90 8.58 15.43 8.21 170 Humeral Measures of Variance, Pooled Sexes Macaca fascicularis, pooled sexes, humerus hLEN hLEN hLEN hPM hPAP hHEAP hHEM hLEN hDML hDASM hDHA hTRP hTRM hDAP 1 2 3 L L 4 L D L Count 9 9 5 9 9 9 9 11 11 11 11 11 11 11 Range 45.79 44.26 44.98 6.36 6.5 6.34 6.56 18.14 10.9 7.89 13.9 5.06 5.5 5.96 Minimum 103.9 105.3 106.6 1 9 9 12.95 13.21 10.68 10.43 26.87 15.55 11.34 13.3 8.11 7.07 9.81 Maximum 149.7 149.6 151.65 7 19.31 19.71 17.02 16.99 45.01 26.45 19.23 27.2 13.17 12.57 15.77 Mean 120.1 120.3 125.1 0 1 7 15.80 16.10 13.67 13.18 38.06 20.52 14.76 17.87 9.77 8.64 12.21 Standard Error 4.39 4.28 7.59 0.78 0.78 0.68 0.79 1.69 1.04 0.69 1.19 0.51 0.52 0.63 Standard Deviation 13.16 12.84 16.96 2.33 2.33 2.05 2.37 5.61 3.45 2.29 3.93 1.68 1.72 2.09 Sample 173.2 164.9 287.7 Variance 3 8 4 5.41 5.41 4.21 5.61 31.48 11.87 5.22 15.46 2.83 2.95 4.38 CV 10.96 10.68 13.55 14.73 14.45 15.01 17.96 14.74 16.79 15.48 22.01 17.23 19.89 17.14 Macaca nemestrina, pooled sexes, humerus hLEN1 hLEN2 hLEN3 hPML hPAP hHEAP hHEM hLEN4 hDML hDASM hDHA hTRPD hTRML hDAP L L Count 3 3 2 3 3 3 3 3 3 3 3 3 3 3 Range 34 32.92 18.18 6.44 4.56 5.31 5.5 8.54 4.54 3.54 4.27 3.56 2.49 2.91 Minimum 155.5 155.58 155.6 20.24 20.61 17.45 17.98 46.9 27.04 20.03 23.66 12.75 10.87 17.02 Maximum 189.5 188.5 173.78 26.68 25.17 22.76 23.48 55.44 31.58 23.57 27.93 16.31 13.36 19.93 Mean 172.54 171.22 164.69 23.73 23.00 20.21 20.04 50.92 29.97 21.67 25.26 14.90 12.32 18.79 Standard Error 9.82 9.54 9.09 1.88 1.32 1.54 1.73 2.48 1.47 1.03 1.35 1.09 0.75 0.90 Standard Deviation 17.00 16.52 12.86 3.25 2.29 2.66 3.00 4.29 2.54 1.78 2.33 1.89 1.29 1.56 Sample Variance 289.00 272.95 165.26 10.59 5.23 7.08 9.00 18.42 6.47 3.18 5.43 3.59 1.68 2.42 CV 9.85 9.65 7.81 13.71 9.95 13.17 14.98 8.43 8.49 8.23 9.22 12.71 10.51 8.28 171 Humeral Measures of Variance, Split Sexes H omo sapiens, female only, humerus hLEN hLEN hLEN hPML hPAP hHEA hHEM hLEN hDML hDASM hDHA hTRP hTRM hDAP 1 2 3 P L 4 L D L Count 9 9 9 9 9 9 9 9 9 9 9 9 9 9 Range 40.00 42.00 43.50 5.74 5.01 7.15 12.82 47.50 14.03 5.84 6.25 3.95 6.46 3.82 Minimum 268.0 273.5 276.5 0 0 0 43.13 40.40 36.56 29.15 83.29 48.47 33.96 37.32 19.11 20.91 22.25 Maximum 308.0 315.5 320.0 0 0 0 48.87 45.41 43.71 41.97 130.7 9 62.50 39.80 43.57 23.06 27.37 26.07 Mean 290.5 297.0 300.7 6 0 8 45.55 42.90 40.38 36.89 108.0 4 54.35 36.80 39.16 21.54 23.94 24.03 Standard Error 4.37 4.57 4.68 0.66 0.54 0.80 1.31 4.67 1.49 0.65 0.71 0.44 0.72 0.38 Standard Deviation 13.12 13.71 14.04 1.98 1.61 2.40 3.94 14.00 4.48 1.96 2.13 1.32 2.16 1.15 Sample 172.0 187.8 197.2 Variance 3 8 6 3.92 2.60 5.78 15.52 196.1 3 20.07 3.84 4.52 1.75 4.66 1.33 CV 4.51 4.62 4.67 4.34 3.76 5.95 10.68 12.96 8.24 5.32 5.43 6.15 9.02 4.79 Homo sapiens, male only, humerus hLEN hLEN hLEN hPML hPAP hHEA hHEM hLEN hDML hDASM hDHA hTRP hTRM hDAP 1 2 3 P L 4 L D L Count 9 9 9 9 9 9 9 9 9 9 9 9 9 9 Range 55.5 56 52.5 7.88 7.03 14.09 16.91 61.33 15.7 17.24 18.16 9.17 9.11 6.67 Minimum 279.5 285 293 47.51 45.58 36.28 35.16 87.89 55.81 36.77 40.35 19.52 22.66 24.51 Maximum 335 341 345.5 55.39 52.61 50.37 52.07 149.22 71.51 54.01 58.51 28.69 31.77 31.18 Mean 314.7 322.2 327.1 51.23 49.06 45.07 43.46 121.88 2 1 0 63.04 42.36 47.27 24.31 27.08 27.97 Standard Error 5.94 6.28 6.13 0.92 0.83 1.47 1.65 7.24 2.03 1.81 1.85 0.92 1.06 0.67 Standard Deviation 17.81 18.84 18.40 2.77 2.49 4.40 4.96 21.72 6.10 5.44 5.55 2.77 3.17 2.01 Sample 317.1 354.8 338.6 471.6 Variance 9 8 1 7.68 6.19 19.37 24.59 6 37.25 29.55 30.82 7.67 10.06 4.04 CV 5.66 5.85 5.63 5.41 5.07 9.77 11.41 17.83 9.68 12.83 11.74 11.39 11.71 7.19 172 Humeral Measures of Variance, Split Sexes P an troglodytes, female only, humerus hLEN hLEN hLEN hPML hPAP hHEA hHEM hLEN hDM hDASM hDHA hTRP hTRM hDAP 1 2 3 P L 4 L L D L Count 8 8 8 9 9 9 9 9 9 9 9 9 9 9 Range 68.5 73.5 77 9.09 10.19 8.83 8.46 28.65 13.98 7.92 8.26 8.21 7.21 5.77 Minimum 250 251 252 37.92 37.9 34.68 31.78 89.42 50.95 38.87 43.14 18.13 20.97 23.52 Maximum 318.5 324.5 329 47.01 48.09 43.51 40.24 118.07 64.93 46.79 51.4 26.34 28.18 29.29 Mean 286.3 289.0 292.5 1 0 6 42.55 41.50 38.36 36.48 103.9 2 58.30 42.49 47.51 21.43 23.45 26.82 Standard Error 6.69 7.14 7.43 0.85 1.06 0.90 0.82 3.49 1.48 0.83 0.97 0.97 0.80 0.59 Standard Deviation 18.93 20.19 21.01 2.55 3.17 2.70 2.45 10.47 4.43 2.48 2.90 2.90 2.41 1.77 Sample 358.2 407.5 441.6 Variance 1 0 0 6.49 10.03 7.27 5.98 109.5 8 19.62 6.16 8.40 8.43 5.80 3.13 CV 6.61 6.98 7.18 5.99 7.63 7.03 6.70 10.07 7.60 5.84 6.10 13.55 10.27 6.60 Pan troglodytes, male only, humerus hLEN hLEN hLEN hPML hPAP hHEA hHEM hLEN hDM hDASM hDHA hTRP hTRM hDAP 1 2 3 P L 4 L L D L Count 6 6 6 6 6 6 6 6 6 6 6 6 6 6 Range 32 31.5 36 8.43 7.55 7.39 9.39 16.64 12.39 6.44 9.2 9.36 3.64 4.14 Minimum 287.5 290.5 290 41.45 39.99 37.6 35.13 87.76 56.55 42.63 46.36 20.54 22.39 26.33 Maximum 319.5 322 326 49.88 47.54 44.99 44.52 104.4 68.94 49.07 55.56 29.9 26.03 30.47 Mean 304.2 306.8 309.0 45.50 44.81 41.28 39.40 100.85 3 8 2 64.19 45.50 50.33 24.45 24.11 28.51 Standard Error 6.15 6.21 6.49 1.41 1.18 1.27 1.40 2.66 1.76 1.12 1.30 1.45 0.61 0.66 Standard Deviation 15.06 15.21 15.91 3.45 2.89 3.12 3.43 6.51 4.32 2.75 3.18 3.56 1.50 1.61 Sample 226.8 231.4 253.0 Variance 8 7 4 11.88 8.35 9.75 11.79 42.41 18.66 7.58 10.12 12.66 2.24 2.61 CV 4.95 4.96 5.15 7.58 6.45 7.57 8.71 6.46 6.73 6.05 6.32 14.55 6.21 5.66 173 Humeral Measures of Variance, Split Sexes P apio hamadryas, female only, humerus hLEN1 hLEN2 hLEN3 hPML hPAP hHEA hHEM hLEN4 hDM hDASM hDHA hTRP hTRM hDAP P L L L D L Count 7 7 2 8 8 8 8 8 8 8 7 8 8 8 Range 35.61 36.14 18.53 5.7 5.56 3.92 6.25 15.85 6.97 6.25 16.19 4.53 7.53 4.41 Minimum 184.78 182 202.71 24.75 24.67 21.55 17.36 50.62 31.12 21.7 25.26 14.94 12.04 20.66 Maximum 220.39 218.14 221.24 30.45 30.23 25.47 23.61 66.47 38.09 27.95 41.45 19.47 19.57 25.07 Mean 200.57 198.25 211.98 27.53 27.53 23.53 21.26 60.12 34.49 24.76 31.78 17.12 14.68 22.22 Standard Error 5.12 5.29 9.27 0.62 0.66 0.54 0.74 1.86 0.80 0.78 1.87 0.47 1.05 0.53 Standard Deviation 13.56 14.01 13.10 1.75 1.87 1.52 2.10 5.27 2.27 2.20 4.94 1.33 2.98 1.50 Sample Variance 183.83 196.22 171.68 3.07 3.50 2.30 4.42 27.81 5.13 4.84 24.42 1.76 8.88 2.26 CV 6.76 7.07 6.18 6.36 6.80 6.44 9.90 8.77 6.57 8.89 15.55 7.76 20.31 6.77 P apio hamadryas, male only, humerus hLEN hLEN hLEN hPML hPAP hHEA hHEM hLEN hDM hDASM hDHA hTRP hTRM hDAP 1 2 3 P L 4 L L D L Count 14 14 5 14 14 13 13 14 15 15 12 15 15 15 Range 53.8 50.47 16.54 10.07 7.37 8.76 6.52 32.16 14.92 9.52 8.79 8.73 7.93 6.94 Minimum 203.7 203.17 225.5 27.1 28.81 22.78 22 61.55 32.3 23.4 31.3 15.6 13.1 23.06 Maximum 257.5 253.6 242.04 4 37.17 36.18 31.54 28.52 93.71 47.22 32.92 40.09 24.33 21.03 30 Mean 229.7 227.8 231.4 4 1 1 33.29 33.52 28.21 26.31 72.86 41.27 30.13 35.66 21.65 16.68 27.02 Standard Error 4.30 4.30 2.95 0.73 0.56 0.83 0.45 2.21 1.00 0.67 0.81 0.57 0.58 0.57 Standard Deviation 16.10 16.09 6.59 2.75 2.08 2.99 1.63 8.26 3.87 2.61 2.80 2.20 2.24 2.20 Sample 259.0 258.8 Variance 5 9 43.39 7.56 4.33 8.93 2.66 68.21 14.98 6.79 7.86 4.83 5.03 4.84 CV 7.01 7.06 2.85 8.26 6.21 10.59 6.20 11.34 9.38 8.65 7.86 10.15 13.44 8.14 174 Humeral Measures of Variance, Split Sexes T heropithecus gelada, female only, humerus hLEN1 hLEN2 hLEN3 hPML hPAP hHEA hHEM hLEN4 hDM hDASM hDHA hTRP hTRM hDAP P L L L D L Count 5 5 2 5 5 4 4 5 5 5 4 5 5 5 Range 12.44 11.01 4.9 1.58 2.13 0.93 0.99 7.71 3.77 3.32 1.29 1.58 5.91 1.81 Minimum 161.38 161.31 169.5 22.57 23.87 21.49 18.13 47.56 27.23 19.17 24.85 14.72 10.52 18.7 Maximum 173.82 172.32 174.4 24.15 26 22.42 19.12 55.27 31 22.49 26.14 16.3 16.43 20.51 Mean 169.25 168.50 171.95 23.33 24.91 21.84 18.50 52.36 29.34 20.85 25.42 15.55 12.82 19.54 Standard Error 2.33 2.18 2.45 0.31 0.38 0.21 0.22 1.36 0.77 0.58 0.31 0.28 1.10 0.30 Standard Deviation 5.20 4.89 3.46 0.69 0.85 0.42 0.44 3.04 1.73 1.29 0.63 0.62 2.46 0.67 Sample Variance 27.03 23.87 12.01 0.48 0.72 0.17 0.19 9.22 2.99 1.65 0.39 0.38 6.04 0.45 CV 3.07 2.90 2.02 2.96 3.40 1.91 2.36 5.80 5.90 6.17 2.46 3.96 19.17 3.44 T heropithecus gelada, male only, humerus hLEN hLEN hLEN hPML hPAP hHEA hHEM hLEN hDM hDASM hDHA hTRP hTRM hDAP 1 2 3 P L 4 L L D L Count 8 8 2 7 8 5 5 8 8 8 6 8 8 8 Range 17.54 18.14 5.74 3.28 4.77 4.54 2 11.78 3.1 2.95 3.48 3.19 5.82 1.02 Minimum 187.5 186.2 196.0 7 6 5 25.14 27.73 23.35 20.86 50.72 32.82 22.45 27.04 16.6 11.7 22.46 Maximum 205.1 204.4 201.71 9 28.42 32.5 27.89 22.86 62.5 35.92 25.4 30.52 19.79 17.52 23.48 Mean 198.8 197.0 198.9 3 6 2 27.54 30.51 25.51 21.81 58.73 34.30 23.89 29.22 17.98 13.52 22.90 Standard Error 2.20 2.28 2.87 0.44 0.68 0.82 0.35 1.26 0.37 0.35 0.49 0.33 0.66 0.15 Standard Deviation 6.21 6.45 4.06 1.17 1.91 1.83 0.78 3.56 1.04 0.99 1.21 0.93 1.87 0.43 Sample Variance 38.62 41.58 16.47 1.37 3.65 3.36 0.61 12.66 1.08 0.99 1.47 0.86 3.50 0.19 CV 3.13 3.27 2.04 4.25 6.27 7.18 3.57 6.06 3.04 4.16 4.14 5.16 13.83 1.90 175 Humeral Measures of Variance, Split Sexes Macaca fascicularis, female only, humerus hLEN hLEN hLEN hPML hPAP hHEA hHEM hLEN hDM hDASM hDHA hTRP hTRM hDAP 1 2 3 P L 4 L L D L Count 5 5 2 5 5 5 5 6 6 6 6 6 6 6 Range 15.59 14.01 13.91 2.74 1.82 2.84 2.72 12.16 4.07 3.46 3.61 1.6 1.1 2.13 Minimum 103.9 105.3 106.6 1 9 9 12.95 13.21 10.68 10.43 26.87 15.55 11.34 13.3 8.11 7.07 9.81 Maximum 119.5 119.4 120.6 15.69 15.03 13.52 13.15 39.03 19.62 14.8 16.91 9.71 8.17 11.94 Mean 112.6 113.0 113.6 1 8 5 14.13 14.32 12.25 11.55 34.91 17.97 13.15 15.29 8.66 7.54 10.70 Standard Error 2.70 2.47 6.96 0.46 0.31 0.58 0.44 2.13 0.61 0.51 0.62 0.24 0.18 0.34 Standard Deviation 6.03 5.53 9.84 1.03 0.70 1.29 0.99 5.21 1.50 1.25 1.51 0.58 0.45 0.84 Sample Variance 36.35 30.60 96.74 1.07 0.48 1.67 0.98 27.19 2.25 1.56 2.28 0.34 0.20 0.70 CV 5.35 4.89 8.65 7.32 4.86 10.56 8.57 14.94 8.34 9.50 9.88 6.73 5.92 7.84 M acaca fascicularis, male only, humerus hLEN hLEN hLEN hPML hPAP hHEA hHEM hLEN hDM hDASM hDHA hTRP hTRM hDAP 1 2 3 P L 4 L L D L Count 4 4 3 4 4 4 4 5 5 5 5 5 5 5 Range 32.36 31.94 34.56 3.26 2.71 2.58 3.71 8.07 5.1 4.18 8.9 3.88 4.41 2.95 Minimum 117.3 117.7 117.1 4 1 1 16.05 17 14.44 13.28 36.94 21.35 15.05 18.3 9.29 8.16 12.82 Maximum 149.7 149.6 151.65 7 19.31 19.71 17.02 16.99 45.01 26.45 19.23 27.2 13.17 12.57 15.77 Mean 129.4 129.3 132.8 5 4 6 17.89 18.32 15.46 15.23 41.84 23.58 16.70 20.96 11.10 9.95 14.03 Standard Error 7.13 7.13 10.09 0.80 0.70 0.59 0.95 1.54 1.04 0.71 1.66 0.72 0.80 0.71 Standard Deviation 14.26 14.26 17.48 1.60 1.40 1.18 1.91 3.45 2.32 1.58 3.72 1.61 1.78 1.58 Sample 203.3 203.3 305.6 Variance 9 1 5 2.55 1.97 1.40 3.63 11.93 5.39 2.50 13.84 2.61 3.16 2.49 CV 11.02 11.02 13.16 8.93 7.66 7.65 12.51 8.25 9.84 9.47 17.74 14.55 17.87 11.24 176 Humeral Measures of Variance, Split Sexes Macaca nemestrina, female only, humerus hLEN1 hLEN2 hLEN3 hPML hPAP hHEA hHEM hLEN4 hDM hDASM hDHA hTRP hTRM hDAP P L L L D L Count 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Range 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Minimum 155.5 155.58 155.6 20.24 20.61 17.45 17.98 46.9 27.04 20.03 23.66 12.75 10.87 17.02 Maximum 155.5 155.58 155.6 20.24 20.61 17.45 17.98 46.9 27.04 20.03 23.66 12.75 10.87 17.02 Mean 155.5 155.58 155.6 20.24 20.61 17.45 17.98 46.9 27.04 20.03 23.66 12.75 10.87 17.02 Standard Error . . . . . . . . . . . . . . Standard Deviation . . . . . . . . . . . . . . Sample Variance . . . . . . . . . . . . . . CV . . . . . . . . . . . . . . M acaca nemestrina, male only, humerus hLEN hLEN hLEN hPML hPAP hHEA hHEM hLEN hDML hDASM hDHA hTRP hTRM hDAP 1 2 3 P L 4 L D L Count 2 2 1 2 2 2 2 2 2 2 2 2 2 2 Range 16.88 18.92 0 2.4 1.96 2.34 4.83 5.02 0.28 2.16 3.75 0.66 0.63 0.5 Minimum 172.6 169.5 173.7 2 8 8 24.28 23.21 20.42 18.65 50.42 31.3 21.41 24.18 15.65 12.73 19.43 Maximum 189.5 188.5 173.78 26.68 25.17 22.76 23.48 55.44 31.58 23.57 27.93 16.31 13.36 19.93 Mean 181.0 179.0 173.7 6 4 8 25.48 24.19 21.59 21.065 52.93 31.44 22.49 26.05 5 15.98 13.045 19.68 Standard Error 8.44 9.46 . 1.2 0.98 1.17 2.415 2.51 0.14 1.08 1.875 0.33 0.315 0.25 Standard Deviation 11.94 13.38 . 1.70 1.39 1.65 3.42 3.55 0.20 1.53 2.65 0.47 0.45 0.35 Sample 142.4 178.9 Variance 7 8 . 2.88 1.92 2.74 11.66 12.60 0.04 2.33 7.03 0.22 0.20 0.13 CV 6.59 7.47 . 6.66 5.73 7.66 16.21 6.71 0.63 6.79 10.18 2.92 3.41 1.80 177 Radial Measures of Variance, Pooled Sexes H omo sapiens, pooled sexes, radius rLEN1 rLEN2 rPAP rPML rNE1 rNE2 rNE3 rTUB rDML rDAP Count 18 18 18 18 18 18 18 18 18 18 Range 67.5 65 7.01 5.99 8.46 9.57 9.44 7.93 15.42 16.19 Minimum 196.5 206 19.91 19.15 7.7 17.88 27.51 19.18 23.23 18.87 Maximum 264 271 26.92 25.14 16.16 27.45 36.95 27.11 38.65 35.06 Mean 231.72 237.97 22.09 21.11 13.45 22.90 32.42 22.61 31.47 22.54 Standard Error 4.40 4.30 0.40 0.34 0.49 0.53 0.56 0.55 0.93 0.86 Standard Deviation 18.66 18.26 1.69 1.45 2.08 2.24 2.37 2.32 3.95 3.66 Sample Variance 348.30 333.51 2.85 2.09 4.32 5.03 5.63 5.40 15.61 13.40 CV 8.05 7.67 7.64 6.85 15.45 9.80 7.32 10.28 12.56 16.24 Pan troglodytes, pooled sexes, radius rLEN1 rLEN2 rPAP rPML rNE1 rNE2 rNE3 rTUB rDML rDAP Count 15 15 15 15 15 15 15 15 15 15 Range 69.5 70 7.27 7.68 9.01 7.27 11.24 18.04 8.89 7.26 Minimum 231 234.5 20.07 19.72 17.19 29.23 35.52 16.25 27.52 20.05 Maximum 300.5 304.5 27.34 27.4 26.2 36.5 46.76 34.29 36.41 27.31 Mean 271.60 274.33 24.45 23.90 21.81 32.30 40.83 24.06 32.53 22.85 Standard Error 5.58 5.50 0.55 0.49 0.68 0.58 0.83 1.28 0.69 0.55 Standard Deviation 21.62 21.31 2.13 1.90 2.62 2.23 3.22 4.95 2.67 2.12 Sample Variance 467.22 453.92 4.53 3.62 6.89 4.98 10.39 24.48 7.13 4.50 CV 7.96 7.77 8.70 7.96 12.03 6.91 7.90 20.57 8.21 9.28 178 Radial Measures of Variance, Pooled Sexes Papio hamadryas, pooled sexes, radius rLEN1 rLEN2 rPAP rPML rNE1 rNE2 rNE3 rTUB rDML rDAP Count 7 18 33 33 18 7 18 7 23 23 Range 35.94 76 8.62 8.32 8.3 6.48 15.71 11.13 9.80 8.35 Minimum 208.44 194 13.72 13.19 5.19 15.88 17.56 22.2 18.7 14.64 Maximum 244.38 270 22.34 21.51 13.49 22.36 33.27 33.33 28.5 22.99 Mean 231.47 231.13 18.68 17.69 9.59 18.87 24.82 25.27 23.59 18.67 Standard Error 4.37 4.76 0.41 0.40 0.51 0.83 1.05 1.49 0.61 0.49 Standard Deviation 11.57 20.18 2.37 2.29 2.18 2.20 4.46 3.94 2.92 2.34 Sample Variance 133.94 407.06 5.63 5.23 4.77 4.84 19.88 15.49 8.51 5.49 CV 5.00 8.73 12.70 12.94 22.76 11.66 17.96 15.57 12.37 12.55 T heropithecus gelada, pooled sexes, radius rLEN1 rLEN2 rPAP rPML rNE1 rNE2 rNE3 rTUB rDML rDAP Count 4 11 12 12 11 4 11 4 10 10 Range 26.59 36.14 3.39 4.92 3.89 3.07 6.44 5.79 7.65 3.06 Minimum 182.84 180.88 13.18 12.21 4.9 11.02 14.32 21.19 13.99 13.76 Maximum 209.43 217.02 16.57 17.13 8.79 14.09 20.76 26.98 21.64 16.82 Mean 191.98 197.50 15.03 14.88 6.58 12.70 17.54 24.45 17.98 15.37 Standard Error 6.13 4.16 0.37 0.46 0.43 0.73 0.61 1.26 0.70 0.35 Standard Deviation 12.26 13.81 1.28 1.58 1.41 1.46 2.01 2.53 2.22 1.12 Sample Variance 150.31 190.78 1.63 2.51 1.99 2.12 4.06 6.39 4.94 1.25 CV 6.39 6.99 8.48 10.64 21.45 11.47 11.48 10.34 12.36 7.28 179 Radial Measures of Variance, Pooled Sexes Macaca fascicularis, pooled sexes, radius rLEN1 rLEN2 rPAP rPML rNE1 rNE2 rNE3 rTUB rDML rDAP Count 5 5 12 12 5 5 5 5 12 12 Range 46.1 47.48 4.46 3.97 6.85 9.68 11.12 6.62 6.37 4.12 Minimum 96.21 98.89 7.34 7.27 4.2 8.36 11.29 8.83 9.62 7.49 Maximum 142.31 146.37 11.8 11.24 11.05 18.04 22.41 15.45 15.99 11.61 Mean 116.01 119.44 9.76 9.07 6.92 12.05 14.98 12.14 12.16 9.44 Standard Error 7.57 7.92 0.41 0.35 1.27 1.71 2.03 1.18 0.53 0.43 Standard Deviation 16.94 17.70 1.42 1.21 2.83 3.82 4.54 2.65 1.85 1.50 Sample Variance 286.80 313.30 2.03 1.45 8.02 14.61 20.66 7.00 3.41 2.25 CV 14.60 14.82 14.60 13.30 40.93 31.71 30.34 21.80 15.18 15.91 M acaca nemestrina, pooled sexes, radius rLEN1 rLEN2 rPAP rPML rNE1 rNE2 rNE3 rTUB rDML rDAP Count 3 3 10 10 4 3 4 3 10 10 Range 38.13 38.23 6.57 6.42 5.56 3.83 4.84 3.92 8.86 6.25 Minimum 133.85 138.27 9.90 9.70 4.38 10.33 14.86 12.25 13.09 10.07 Maximum 171.98 176.50 16.47 16.12 9.94 14.16 19.70 16.17 21.95 16.32 Mean 152.71 157.41 13.21 12.77 8.00 12.65 18.09 14.29 17.65 13.25 Standard Error 11.01 11.04 0.81 0.71 1.23 1.18 1.14 1.13 0.97 0.78 Standard Deviation 19.07 19.12 2.55 2.25 2.47 2.04 2.28 1.96 3.07 2.47 Sample Variance 363.60 365.39 6.52 5.08 6.09 4.16 5.21 3.86 9.44 6.09 CV 12.49 12.14 19.32 17.64 30.86 16.12 12.62 13.75 17.41 18.62 180 Radial Measures of Variance, Split Sexes H omo sapiens, female only, radius rLEN1 rLEN2 rPAP rPML rNE1 rNE2 rNE3 rTUB rDML rDAP Count 9 9 9 9 9 9 9 9 9 9 Range 48 42 2.8 2.47 4.42 4.47 5.98 6.64 5.2 2.65 Minimum 196.5 206 19.91 19.15 10.81 19.27 27.51 19.79 27.5 18.87 Maximum 244.5 248 22.71 21.62 15.23 23.74 33.49 26.43 32.7 21.52 Mean 221.00 226.89 21.30 20.32 13.25 22.25 31.00 22.03 29.44 20.30 Standard Error 5.09 4.78 0.28 0.29 0.56 0.49 0.70 0.62 0.56 0.34 Standard Deviation 15.27 14.33 0.83 0.86 1.67 1.48 2.09 1.87 1.69 1.02 Sample Variance 233.13 205.49 0.68 0.74 2.80 2.20 4.35 3.50 2.85 1.03 CV 6.91 6.32 3.88 4.22 12.63 6.67 6.73 8.50 5.74 5.01 H omo sapiens, male only, radius rLEN1 rLEN2 rPAP rPML rNE1 rNE2 rNE3 rTUB rDML rDAP Count 9 9 9 9 9 9 9 9 9 9 Range 52.5 51 6.59 5.04 8.46 9.57 5.34 7.93 15.42 12.98 Minimum 211.5 220 20.33 20.1 7.7 17.88 31.61 19.18 23.23 22.08 Maximum 264 271 26.92 25.14 16.16 27.45 36.95 27.11 38.65 35.06 Mean 242.44 249.06 22.87 21.90 13.66 23.55 33.83 23.20 33.50 24.79 Standard Error 5.25 5.02 0.67 0.51 0.84 0.91 0.59 0.90 1.53 1.34 Standard Deviation 15.76 15.06 2.00 1.52 2.51 2.74 1.77 2.69 4.59 4.01 Sample Variance 248.34 226.84 3.99 2.30 6.29 7.53 3.14 7.22 21.06 16.10 CV 6.50 6.05 8.74 6.92 18.37 11.65 5.24 11.58 13.70 16.19 181 Radial Measures of Variance, Split Sexes P an troglodytes, female only, radius rLEN1 rLEN2 rPAP rPML rNE1 rNE2 rNE3 rTUB rDML rDAP Count 9 9 9 9 9 9 9 9 9 9 Range 67.5 66.5 5.77 4.95 8.4 5.29 8.58 18.04 8.45 4.3 Minimum 231 234.5 20.07 19.72 17.19 29.23 35.52 16.25 27.52 20.05 Maximum 298.5 301 25.84 24.67 25.59 34.52 44.1 34.29 35.97 24.35 Mean 265.00 267.61 23.58 22.98 21.25 31.62 39.80 23.19 31.81 22.24 Standard Error 7.74 7.66 0.66 0.51 0.78 0.63 0.87 1.91 0.91 0.63 Standard Deviation 23.21 22.99 1.97 1.53 2.35 1.90 2.61 5.74 2.73 1.88 Sample Variance 538.81 528.42 3.90 2.34 5.50 3.61 6.80 32.92 7.45 3.53 CV 8.76 8.59 8.37 6.66 11.04 6.01 6.55 24.74 8.58 8.44 Pan troglodytes, male only, radius rLEN1 rLEN2 rPAP rPML rNE1 rNE2 rNE3 rTUB rDML rDAP Count 6 6 6 6 6 6 6 6 6 6 Range 40 40.5 4.63 4.37 8.11 6.19 9.19 10.08 5.15 6.78 Minimum 260.5 264 22.71 23.03 18.09 30.31 37.57 19.47 31.26 20.53 Maximum 300.5 304.5 27.34 27.4 26.2 36.5 46.76 29.55 36.41 27.31 Mean 281.50 284.42 25.74 25.28 22.65 33.34 42.38 25.36 33.60 23.76 Standard Error 6.46 6.08 0.72 0.65 1.23 1.00 1.50 1.44 0.98 0.94 Standard Deviation 15.81 14.90 1.75 1.60 3.01 2.46 3.67 3.54 2.39 2.30 Sample Variance 250.10 222.14 3.08 2.57 9.07 6.04 13.44 12.50 5.73 5.30 CV 5.62 5.24 6.81 6.34 13.30 7.37 8.65 13.95 7.13 9.69 182 Radial Measures of Variance, Split Sexes Papio hamadryas, female only, radius rLEN1 rLEN2 rPAP rPML rNE1 rNE2 rNE3 rTUB rDML rDAP Count 2 5 10 10 5 2 5 2 8 8 Range 25.56 46.39 4.26 4.32 4.45 1.08 4.83 1.39 3.51 3.08 Minimum 208.44 194 13.72 13.19 5.19 15.88 17.56 22.98 18.7 14.64 Maximum 234 240.39 17.98 17.51 9.64 16.96 22.39 24.37 22.21 17.72 Mean 221.22 213.98 15.77 15.05 7.91 16.42 20.09 23.68 20.53 15.95 Standard Error 12.78 7.85 0.42 0.43 0.74 0.54 0.95 0.70 0.48 0.34 Standard Deviation 18.07 17.56 1.33 1.35 1.64 0.76 2.11 0.98 1.36 0.96 Sample Variance 326.66 308.43 1.76 1.82 2.70 0.58 4.47 0.97 1.85 0.93 CV 8.17 8.21 8.42 8.96 20.80 4.65 10.53 4.15 6.63 6.03 Papio hamadryas, male only, radius rLEN1 rLEN2 rPAP rPML rNE1 rNE2 rNE3 rTUB rDML rDAP Count 5 13 23 23 13 5 13 5 15 15 Range 16.38 61 4.92 5.78 6.19 4.13 12.43 11.13 7.88 4.93 Minimum 228 209 17.42 15.73 7.3 18.23 20.84 22.2 20.62 18.06 Maximum 244.38 270 22.34 21.51 13.49 22.36 33.27 33.33 28.5 22.99 Mean 235.58 237.73 19.94 18.83 10.24 19.85 26.64 25.91 25.22 20.12 Standard Error 3.02 4.84 0.29 0.32 0.57 0.76 1.03 2.06 0.53 0.33 Standard Deviation 6.76 17.44 1.40 1.53 2.05 1.71 3.70 4.61 2.07 1.30 Sample Variance 45.64 304.13 1.95 2.34 4.21 2.91 13.72 21.21 4.27 1.68 CV 2.87 7.34 7.01 8.13 20.04 8.60 13.90 17.78 8.19 6.45 183 Radial Measures of Variance, Split Sexes Theropithecus gelada, female only, radius rLEN1 rLEN2 rPAP rPML rNE1 rNE2 rNE3 rTUB rDML rDAP Count 2 5 5 5 5 2 5 2 4 4 Range 1.22 7.26 1.4 2.67 3.08 1.77 3.21 2.66 3.25 0.93 Minimum 182.84 180.88 13.18 12.21 4.9 11.96 14.32 21.19 13.99 13.76 Maximum 184.06 188.14 14.58 14.88 7.98 13.73 17.53 23.85 17.24 14.69 Mean 183.45 184.39 13.76 13.52 6.12 12.85 15.83 22.52 15.81 14.18 Standard Error 0.61 1.38 0.24 0.50 0.70 0.89 0.62 1.33 0.70 0.22 Standard Deviation 0.86 3.08 0.55 1.11 1.56 1.25 1.39 1.88 1.41 0.44 Sample Variance 0.74 9.51 0.30 1.23 2.43 1.57 1.94 3.54 1.99 0.19 CV 0.47 1.67 3.96 8.21 25.44 9.74 8.79 8.35 8.92 3.08 T heropithecus gelada, male only, radius rLEN1 rLEN2 rPAP rPML rNE1 rNE2 rNE3 rTUB rDML rDAP Count 2 6 7 7 6 2 6 2 6 6 Range 17.84 21.96 1.93 2.65 3.22 3.07 2.92 1.2 3.50 1.17 Minimum 191.59 195.06 14.64 14.48 5.57 11.02 17.84 25.78 18.14 15.65 Maximum 209.43 217.02 16.57 17.13 8.79 14.09 20.76 26.98 21.64 16.82 Mean 200.51 208.42 15.94 15.86 6.96 12.56 18.97 26.38 19.42 16.16 Standard Error 8.92 3.13 0.26 0.40 0.53 1.54 0.44 0.60 0.48 0.20 Standard Deviation 12.61 7.67 0.68 1.05 1.29 2.17 1.09 0.85 1.19 0.49 Sample Variance 159.13 58.87 0.47 1.11 1.66 4.71 1.19 0.72 1.41 0.24 CV 6.29 3.68 4.29 6.65 18.52 17.29 5.74 3.22 6.11 3.06 184 Radial Measures of Variance, Split Sexes Macaca fascicularis, female only, radius rLEN1 rLEN2 rPAP rPML rNE1 rNE2 rNE3 rTUB rDML rDAP Count 2 2 6 6 2 2 2 2 6 6 Range 12.44 11.84 2.71 1.76 0.89 1.31 0.03 2.49 3.2 2.62 Minimum 96.21 98.89 7.34 7.27 4.2 8.36 11.29 8.83 9.62 7.49 Maximum 108.65 110.73 10.05 9.03 5.09 9.67 11.32 11.32 12.82 10.11 Mean 102.43 104.81 8.69 8.17 4.65 9.02 11.31 10.08 11.02 8.43 Standard Error 6.22 5.92 0.43 0.30 0.45 0.66 0.02 1.25 0.52 0.49 Standard Deviation 8.80 8.37 1.06 0.74 0.63 0.93 0.02 1.76 1.28 1.19 Sample Variance 77.38 70.09 1.13 0.55 0.40 0.86 0.00 3.10 1.64 1.42 CV 8.59 7.99 12.22 9.11 13.55 10.28 0.19 17.48 11.62 14.14 Macaca fascicularis, male only, radius rLEN1 rLEN2 rPAP rPML rNE1 rNE2 rNE3 rTUB rDML rDAP Count 3 3 6 6 3 3 3 3 6 6 Range 27.97 29.46 2.22 2.59 5.37 7.22 7.92 4.5 4.24 2.52 Minimum 114.34 116.91 9.58 8.65 5.68 10.82 14.49 10.95 11.75 9.09 Maximum 142.31 146.37 11.8 11.24 11.05 18.04 22.41 15.45 15.99 11.61 Mean 125.07 129.19 10.83 9.96 8.43 14.08 17.43 13.51 13.30 10.45 Standard Error 8.71 8.85 0.31 0.34 1.55 2.11 2.50 1.34 0.67 0.42 Standard Deviation 15.08 15.33 0.77 0.84 2.69 3.66 4.34 2.31 1.65 1.04 Sample Variance 227.37 235.03 0.59 0.71 7.22 13.40 18.80 5.36 2.72 1.08 CV 12.06 11.87 7.10 8.44 31.87 26.00 24.88 17.13 12.40 9.94 185 Radial Measures of Variance, Split Sexes Macaca nemestrina, female only, radius rLEN1 rLEN2 rPAP rPML rNE1 rNE2 rNE3 rTUB rDML rDAP Count 2 2 4 4 2 2 2 2 4 4 Range 18.44 19.2 3.1 2.33 4.38 3.83 3.22 3.92 2.89 2.61 Minimum 133.85 138.27 9.9 9.7 4.38 10.33 14.86 12.25 13.09 10.07 Maximum 152.29 157.47 13 12.03 8.76 14.16 18.08 16.17 15.98 12.68 Mean 143.07 147.87 11.17 11.11 6.57 12.245 16.47 14.21 15.03 11.3375 Standard Error 9.22 9.60 0.66 0.51 2.19 1.92 1.61 1.96 0.66 0.53 Standard Deviation 13.04 13.58 1.32 1.02 3.10 2.71 2.28 2.77 1.31 1.07 Sample Variance 170.02 184.32 1.74 1.03 9.59 7.33 5.18 7.68 1.72 1.14 CV 9.11 9.18 11.80 9.14 47.14 22.12 13.82 19.51 8.72 9.41 M acaca nemestrina, male only, radius rLEN1 rLEN2 rPAP rPML rNE1 rNE2 rNE3 rTUB rDML rDAP Count 1 1 6 6 2 1 2 1 6 6 Range 0.00 0.00 6.36 6.30 1.03 0.00 0.00 0.00 7.15 6.05 Minimum 171.98 176.50 10.11 9.82 8.91 13.46 19.70 14.45 14.80 10.27 Maximum 171.98 176.50 16.47 16.12 9.94 13.46 19.70 14.45 21.95 16.32 Mean 171.98 176.50 14.57 13.88 9.43 13.46 19.70 14.45 19.39 14.53 Standard Error . . 0.92 0.90 0.52 . . . 1.07 0.95 Standard Deviation . . 2.27 2.20 0.73 . . . 2.61 2.32 Sample Variance . . 5.13 4.84 0.53 . . . 6.83 5.38 CV . . 15.54 15.85 7.73 . . . 13.47 15.97 186 Femoral Measures of Variance, Pooled Sexes Homo sapiens, pooled sexes, femur fLEN1 fLEN2 fPML fMLLES fGT fAPLES fHEP fHEM fHEA fPSP fPSM fDML fDAP fCPD fCML fICGP fICGM S S D L P D L D L Count 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 Range 87 96.5 24.38 17.3 10.3 12.42 13.06 14.42 12.62 7.36 16.12 22.04 12.04 11.74 20.36 9.06 11.36 Minimum 367 386 76.26 26.94 4.14 26.04 37.37 32.42 37.52 30.19 36.93 67.6 56.75 33.05 61.24 21.65 14.04 Maximum 454 482.5 100.64 44.24 14.44 38.46 50.43 46.84 50.14 37.55 53.05 89.64 68.79 44.79 81.6 30.71 25.4 Mean 415.28 436.19 87.61 35.36 8.67 30.47 43.99 37.98 43.72 33.17 41.99 76.36 61.09 38.61 70.62 26.50 20.25 Standard Error 6.25 6.25 1.78 0.94 0.76 0.73 0.84 0.91 0.88 0.51 1.07 1.39 0.89 0.86 1.45 0.66 0.65 Standard Deviation 26.53 26.52 7.57 3.98 3.21 3.09 3.54 3.88 3.74 2.18 4.53 5.90 3.78 3.65 6.14 2.79 2.75 Sample Variance 703.68 703.47 57.35 15.84 10.32 9.55 12.56 15.03 14.00 4.76 20.56 34.78 14.31 13.29 37.74 7.77 7.56 CV 6.39 6.08 8.64 11.26 37.08 10.14 8.06 10.21 8.56 6.58 10.80 7.72 6.19 9.44 8.70 10.52 13.57 P an troglodytes, pooled sexes, femur fLEN1 fLEN2 fPML fMLLES fGT fAPLES fHEP fHEM fHEA fPSP fPSM fDML fDAP fCPD fCML fICGP fICGM S S D L P D L D L Count 13 13 15 15 15 15 15 15 15 14 14 14 14 14 14 14 14 Range 64 61.5 19.11 14.65 8.36 15.7 8.87 14.13 8.85 10.58 9.01 13.54 27.25 7.21 32.82 9.43 7.29 Minimum 251.5 253 53.05 24.27 9.26 22.24 28.26 21.48 28.32 22.21 26.83 53.87 33.88 25.41 28.55 13.39 13.77 Maximum 315.5 314.5 72.16 38.92 17.62 37.94 37.13 35.61 37.17 32.79 35.84 67.41 61.13 32.62 61.37 22.82 21.06 Mean 285.58 289.04 63.77 32.90 13.58 29.19 32.57 29.02 32.70 27.28 32.09 59.70 41.01 29.45 53.47 18.39 17.17 Standard Error 4.76 4.71 1.54 1.18 0.64 0.96 0.67 0.98 0.63 0.75 0.65 1.12 1.80 0.56 2.14 0.69 0.52 Standard Deviation 17.17 17.00 5.95 4.55 2.48 3.73 2.58 3.78 2.46 2.81 2.42 4.19 6.73 2.11 8.01 2.59 1.95 Sample Variance 294.70 288.98 35.45 20.73 6.14 13.92 6.68 14.26 6.04 7.91 5.85 17.57 45.23 4.44 64.13 6.70 3.81 CV 6.01 5.88 9.34 13.84 18.24 12.78 7.94 13.01 7.52 10.31 7.54 7.02 16.40 7.16 14.98 14.08 11.36 187 Femoral Measures of Variance, Pooled Sexes Papio hamadryas, pooled sexes, femur fLEN1 fLEN2 fPML fMLLES fGT fAPLES fHEP fHEM fHEA fPSP fPSM fDML fDAP fCPD fCML fICGP fICGM S S D L P D L D L Count 19 19 19 7 17 7 19 19 19 19 7 19 19 19 7 7 7 Range 85.95 83.08 16.51 5.59 8.2 3.37 6.48 7.21 6.18 9.14 4.95 14.21 10.36 7.76 7.55 5.06 1.86 Minimum 215.29 208.06 41.09 20.88 11.6 18.86 19.72 18.37 19.76 15.94 19.95 32.01 26.52 17.46 33.03 11.39 10.67 Maximum 301.24 291.14 57.6 26.47 19.8 22.23 26.2 25.58 25.94 25.08 24.9 46.22 36.88 25.22 40.58 16.45 12.53 Mean 254.89 246.76 49.30 23.24 15.26 20.33 23.36 21.45 23.71 20.28 22.87 39.28 32.39 22.08 38.06 14.11 11.58 Standard Error 5.82 5.49 1.21 0.82 0.63 0.43 0.48 0.55 0.47 0.68 0.73 1.01 0.83 0.57 1.07 0.62 0.27 Standard Deviation 25.37 23.93 5.26 2.18 2.60 1.14 2.10 2.39 2.07 2.99 1.94 4.39 3.60 2.47 2.82 1.63 0.71 Sample Variance 643.74 572.70 27.70 4.74 6.78 1.29 4.43 5.73 4.28 8.91 3.77 19.28 12.96 6.12 7.95 2.66 0.50 CV 9.95 9.70 10.68 9.37 17.05 5.59 9.01 11.16 8.72 14.72 8.49 11.18 11.11 11.21 7.41 11.57 6.10 Theropithecus gelada, pooled sexes, femur fLEN1 fLEN fPML fMLLES fGT fAPLES fHEP fHEM fHEA fPSP fPSM fDM fDAP fCPD fCML fICGP fICGM 2 S S D L P D L L D L Count 10 10 10 4 9 4 10 10 10 9 4 9 9 9 4 4 4 Range 40.05 39.41 7.24 4.01 5.52 5.86 4.8 5.75 4.01 6.27 6.11 6.46 6.22 4.51 6.53 2.88 2.13 Minimum 179.28 173.79 35.56 15.18 9.23 18.19 17.12 14.98 17.78 15.02 18.03 30.62 24.02 15.78 29.22 10.88 10.03 Maximum 219.33 213.2 42.8 19.19 14.75 24.05 21.92 20.73 21.79 21.29 24.14 37.08 30.24 20.29 35.75 13.76 12.16 Mean 197.40 191.61 39.21 16.62 12.04 20.58 19.49 17.76 19.69 17.23 20.45 33.97 27.08 18.07 32.15 12.02 10.97 Standard Error 5.09 4.49 0.86 0.89 0.68 1.37 0.50 0.61 0.46 0.72 1.33 0.90 0.90 0.52 1.63 0.65 0.44 Standard Deviation 16.09 14.18 2.72 1.78 2.05 2.75 1.58 1.93 1.45 2.16 2.66 2.69 2.71 1.56 3.26 1.29 0.88 Sample 201.2 Variance 258.83 1 7.41 3.18 4.19 7.54 2.51 3.71 2.12 4.68 7.05 7.24 7.36 2.42 10.62 1.68 0.78 CV 8.15 7.40 6.94 10.73 17.00 13.34 8.12 10.84 7.39 12.55 12.99 7.92 10.01 8.61 10.13 10.77 8.05 188 Femoral Measures of Variance, Pooled Sexes M acaca fascicularis, pooled sexes, femur fLEN1 fLEN2 fPML fMLLES fGT fAPLES fHEP fHEM fHEA fPSP fPSM fDML fDAP fCPD fCML fICGP fICGM S S D L P D L D L Count 10 10 11 5 11 5 11 11 11 10 5 10 10 10 5 5 5 Range 55.79 50.48 10.91 9.98 3.36 3.94 4.15 4.97 4 7.12 5.1 7.41 8.47 3.41 7.86 2.35 2.14 Minimum 113.27 112.97 19.77 7.98 5.11 8.75 9.85 8.5 10.28 8.83 7.85 16.79 13.24 9.95 16.03 6.05 4.9 Maximu m 169.06 163.45 30.68 17.96 8.47 12.69 14 13.47 14.28 15.95 12.95 24.2 21.71 13.36 23.89 8.4 7.04 Mean 133.66 130.99 23.92 13.52 6.49 10.57 11.64 11.46 11.95 11.17 9.90 19.72 16.05 11.31 19.87 7.30 5.94 Standard Error 4.96 4.55 1.04 1.68 0.31 0.75 0.38 0.52 0.42 0.81 0.88 0.78 0.86 0.40 1.67 0.41 0.39 Standard Deviation 15.69 14.38 3.44 3.75 1.04 1.68 1.27 1.72 1.40 2.56 1.96 2.47 2.71 1.26 3.74 0.93 0.88 Sample Variance 246.30 206.66 11.82 14.07 1.07 2.83 1.60 2.95 1.97 6.55 3.85 6.08 7.37 1.60 14.01 0.86 0.77 CV 11.74 10.98 14.37 27.74 15.97 15.92 10.87 14.98 11.73 22.91 19.81 12.50 16.92 11.17 18.83 12.67 14.73 M acaca nemestrina, pooled sexes, femur fLEN1 fLEN2 fPML fMLLES fGT fAPLES fHEP fHEM fHEA fPSP fPSM fDML fDAP fCPD fCML fICGP fICGM S S D L P D L D L Count 4 4 4 3 4 3 4 4 4 4 3 4 4 4 3 3 3 Range 64.44 60.34 10.33 8.39 4.61 5.72 4.82 4.83 5.68 5.63 8.25 7.62 6.89 3.8 9.14 5.8 2.34 Minimum 158.56 158.66 25.96 14.03 5.97 10.35 13.17 11.52 12.68 13.04 11.79 22.44 18.9 12.93 21.27 7.79 7.38 Maximum 223 219 36.29 22.42 10.58 16.07 17.99 16.35 18.36 18.67 20.04 30.06 25.79 16.73 30.41 13.59 9.72 Mean 187.24 185.13 32.16 18.34 7.89 13.68 15.99 13.76 16.21 15.55 14.71 27.09 22.76 15.06 25.49 10.24 8.51 Standard Error 14.31 13.41 2.31 2.42 1.14 1.72 1.03 1.00 1.26 1.42 2.67 1.81 1.65 0.79 2.66 1.73 0.68 Standard Deviation 28.62 26.83 4.63 4.20 2.29 2.97 2.05 2.00 2.51 2.84 4.62 3.61 3.31 1.58 4.61 3.00 1.17 Sample Variance 818.92 719.85 21.43 17.64 5.24 8.84 4.20 4.00 6.32 8.06 21.37 13.05 10.94 2.48 21.25 9.01 1.37 CV 15.28 14.49 14.39 22.90 29.00 21.74 12.82 14.53 15.51 18.26 31.43 13.34 14.53 10.46 18.09 29.30 13.76 189 Femoral Measures of Variance, Split Sexes H omo sapiens, female only, femur fLEN1 fLEN2 fPML fMLLES fGT fAPLES fHEP fHEM fHEA fPSPD fPSM fDML fDAP fCPD fCML fICGP fICGM S S D L P L D L Count 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 Range 71 64 19.27 13.93 9.06 6.88 9.19 6.56 8.6 5.33 6.26 11.19 4.68 11.11 9.02 6.69 8.11 Minimum 367 386 76.26 26.94 5.18 26.04 37.37 32.42 37.52 30.19 36.93 67.6 56.75 33.68 61.24 21.86 14.04 Maximum 438 450 95.53 40.87 14.24 32.92 46.56 38.98 46.12 35.52 43.19 78.79 61.43 44.79 70.26 28.55 22.15 Mean 400.2 421.5 8 0 83.81 33.70 10.02 28.53 41.56 35.67 41.19 32.55 39.50 72.50 58.97 38.55 66.22 25.23 19.48 Standard Error 6.60 6.69 2.04 1.31 0.91 0.72 0.90 0.81 0.85 0.68 0.60 1.31 0.57 1.19 1.13 0.80 0.98 Standard Deviation 19.79 20.07 6.11 3.94 2.72 2.15 2.70 2.43 2.55 2.03 1.81 3.93 1.70 3.57 3.39 2.39 2.94 Sample 391.6 402.6 Variance 3 9 37.30 15.52 7.40 4.64 7.31 5.91 6.51 4.13 3.27 15.41 2.88 12.72 11.53 5.72 8.63 CV 4.94 4.76 7.29 11.69 27.15 7.55 6.50 6.82 6.19 6.25 4.58 5.41 2.88 9.25 5.13 9.48 15.08 Homo sapiens, male only, femur fLEN1 fLEN fPML fMLLES fGT fAPLES fHEP fHEM fHEA fPSP fPSM fDML fDAP fCPD fCML fICGP fICGM 2 S S D L P D L D L Count 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 Range 74 75.5 19.96 10.95 10.3 10.2 7.34 11.78 7.84 7.06 15.76 14.31 11.35 11.66 13.91 9.06 8.57 Minimum 380 407 80.68 33.29 4.14 28.26 43.09 35.06 42.3 30.49 37.29 75.33 57.44 33.05 67.69 21.65 16.83 Maximum 454 482.5 100.64 44.24 14.44 38.46 50.43 46.84 50.14 37.55 53.05 89.64 68.79 44.71 81.6 30.71 25.4 Mean 430.28 450.89 91.41 37.01 7.31 32.41 46.42 40.30 46.24 33.80 44.47 80.21 63.21 38.67 75.02 27.77 21.03 Standard Error 8.15 8.21 2.40 1.15 1.08 0.89 0.82 1.25 1.00 0.75 1.72 1.67 1.39 1.31 1.67 0.89 0.82 Standard Deviation 24.44 24.62 7.21 3.46 3.23 2.68 2.47 3.74 2.99 2.26 5.15 5.01 4.17 3.94 5.01 2.68 2.47 Sample 606.3 Variance 597.44 6 52.05 11.97 10.41 7.18 6.10 13.97 8.91 5.10 26.57 25.07 17.42 15.51 25.06 7.16 6.09 CV 5.68 5.46 7.89 9.35 44.14 8.27 5.32 9.27 6.46 6.68 11.59 6.24 6.60 10.18 6.67 9.64 11.74 190 Femoral Measures of Variance, Split Sexes Pan troglodytes, female only, femur fLEN1 fLEN2 fPML fMLLES fGT fAPLES fHEP fHEM fHEA fPSP fPSM fDML fDAP fCPD fCML fICGP fICGM S S D L P D L D L Count 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 Range 51 57 16.68 12.9 7.25 15.7 6.78 11.16 6.68 6.46 8.31 8.74 27.25 6.2 32.82 7.14 5.19 Minimum 251.5 253 53.05 24.27 9.26 22.24 28.26 21.48 28.32 22.21 26.83 53.87 33.88 25.41 28.55 15.68 13.79 Maximum 302.5 310 69.73 37.17 16.51 37.94 35.04 32.64 35 28.67 35.14 62.61 61.13 31.61 61.37 22.82 18.98 Mean 278.1 282.5 9 0 60.82 30.77 12.87 28.66 31.30 27.86 31.56 26.09 31.59 58.37 40.11 28.55 51.58 18.61 16.80 Standard Error 5.58 6.09 1.77 1.37 0.80 1.56 0.69 1.09 0.68 0.82 0.81 1.09 2.77 0.61 3.08 0.86 0.51 Standard Deviation 15.78 17.23 5.32 4.12 2.41 4.67 2.06 3.27 2.04 2.47 2.43 3.28 8.32 1.84 9.25 2.57 1.54 Sample 248.9 296.7 Variance 2 1 28.31 17.01 5.80 21.79 4.26 10.70 4.18 6.11 5.90 10.77 69.19 3.40 85.62 6.60 2.36 CV 5.67 6.10 8.75 13.40 18.70 16.28 6.60 11.74 6.48 9.47 7.69 5.62 20.74 6.46 17.94 13.80 9.15 Pan troglodytes, male only, femur fLEN fLEN fPML fMLLES fGT fAPLES fHEP fHEM fHEA fPSP fPSM fDML fDAP fCPD fCML fICGP fICGM 1 2 S S D L P D L D L Count 5 5 6 6 6 6 6 6 6 5 5 5 5 5 5 5 5 Range 28 24.5 9.29 8.86 6.68 4.63 5.13 11.99 5.32 5.99 6.12 10.77 5.04 4.12 9.27 7.56 7.29 Minimum 287.5 290 62.87 30.06 10.94 27.59 32 23.62 31.85 26.8 29.72 56.64 39.44 28.5 51.86 13.39 13.77 Maximum 315.5 314.5 72.16 38.92 17.62 32.22 37.13 35.61 37.17 32.79 35.84 67.41 44.48 32.62 61.13 20.95 21.06 Mean 297.4 299.5 0 0 68.20 36.10 14.65 29.97 34.48 30.77 34.41 29.40 32.99 62.09 42.62 31.07 56.88 17.98 17.83 Standard Error 5.74 5.01 1.57 1.32 0.97 0.69 0.88 1.67 0.86 0.97 1.06 2.21 0.85 0.71 1.71 1.29 1.17 Standard Deviation 12.83 11.20 3.84 3.23 2.38 1.70 2.15 4.09 2.10 2.17 2.37 4.94 1.89 1.59 3.82 2.87 2.61 Sample 164.5 125.3 Variance 5 8 14.77 10.41 5.66 2.87 4.62 16.69 4.39 4.72 5.62 24.41 3.58 2.54 14.57 8.26 6.80 CV 4.31 3.74 5.64 8.94 16.24 5.66 6.24 13.27 6.09 7.39 7.19 7.96 4.44 5.13 6.71 15.98 14.62 191 Femoral Measures of Variance, Split Sexes P apio hamadryas, female only, femur fLEN1 fLEN2 fPML fMLLES fGT fAPLES fHEP fHEM fHEA fPSP fPSM fDML fDAP fCPD fCML fICGP fICGM S S D L P D L D L Count 6 6 6 2 4 2 6 6 6 6 2 6 6 6 2 2 2 Range 38.09 38.02 6.52 0.33 1.77 0.9 3.37 2.4 3.35 4.85 0.49 4.75 3.32 2.73 2.14 3.1 0.82 Minimum 215.29 208.06 41.09 20.88 11.6 18.86 19.72 18.37 19.76 16.11 19.95 32.01 26.52 17.46 33.03 11.39 10.67 Maximum 253.38 246.08 47.61 21.21 13.37 19.76 23.09 20.77 23.11 20.96 20.44 36.76 29.84 20.19 35.17 14.49 11.49 Mean 227.41 221.26 43.30 21.05 12.09 19.31 20.98 19.43 21.24 17.93 20.20 34.25 28.13 18.98 34.10 12.94 11.08 Standard Error 5.83 5.59 1.04 0.17 0.43 0.45 0.55 0.32 0.49 0.94 0.25 0.66 0.57 0.38 1.07 1.55 0.41 Standard Deviation 14.29 13.70 2.54 0.23 0.85 0.64 1.34 0.78 1.21 2.30 0.35 1.61 1.39 0.94 1.51 2.19 0.58 Sample 187.7 Variance 204.10 5 6.44 0.05 0.73 0.41 1.79 0.61 1.47 5.28 0.12 2.60 1.93 0.88 2.29 4.80 0.34 CV 6.28 6.19 5.86 1.11 7.05 3.30 6.37 4.01 5.71 12.81 1.72 4.71 4.93 4.94 4.44 16.94 5.23 Papio hamadryas, male only, femur fLEN1 fLEN2 fPML fMLLES fGT fAPLES fHEP fHEM fHEAP fPSPD fPSML fDML fDAP fCPD fCML fICGP fICGM S S D L D L Count 13 13 13 5 13 5 13 13 13 13 5 13 13 13 5 5 5 Range 63.05 58.49 12.51 5 6.5 2.35 4.32 6.16 4.04 9.14 1.89 12.68 8.55 4.23 1.47 3.78 1.82 Minimum 238.19 232.65 45.09 21.47 13.3 19.88 21.88 19.42 21.9 15.94 23.01 33.54 28.33 20.99 39.11 12.67 10.71 Maximum 301.24 291.14 57.6 26.47 19.8 22.23 26.2 25.58 25.94 25.08 24.9 46.22 36.88 25.22 40.58 16.45 12.53 Mean 267.58 258.52 52.07 24.12 16.24 20.74 24.46 22.39 24.84 21.37 23.94 41.61 34.36 23.51 39.65 14.57 11.78 Standard Error 5.03 4.85 0.98 0.86 0.59 0.47 0.37 0.64 0.32 0.74 0.35 0.85 0.64 0.37 0.27 0.61 0.31 Standard Deviation 18.13 17.49 3.54 1.93 2.11 1.05 1.33 2.32 1.17 2.67 0.78 3.05 2.31 1.33 0.61 1.36 0.70 Sample Variance 328.67 305.83 12.55 3.72 4.47 1.11 1.77 5.36 1.37 7.13 0.61 9.31 5.35 1.77 0.37 1.84 0.49 CV 6.78 6.76 6.80 8.00 13.02 5.09 5.44 10.34 4.71 12.50 3.25 7.33 6.73 5.66 1.53 9.31 5.93 192 Femoral Measures of Variance, Split Sexes T heropithecus gelada, female only, femur fLEN1 fLEN2 fPML fMLLES fGT fAPLES fHEP fHEM fHEA fPSP fPSM fDML fDAP fCPD fCML fICGP fICGM S S D L P D L D L Count 5 5 5 2 4 2 5 5 5 4 2 4 4 4 2 2 2 Range 8.56 10.91 3.89 0.54 1.67 3.32 1.95 3.35 1.8 2.22 1.12 0.98 0.57 2.18 0.35 0.33 0.84 Minimum 179.28 173.79 35.56 15.18 9.23 18.19 17.12 14.98 17.78 15.02 18.03 30.62 24.02 15.78 29.22 10.88 10.03 Maximum 187.84 184.7 39.45 15.72 10.9 21.51 19.07 18.33 19.58 17.24 19.15 31.6 24.59 17.96 29.57 11.21 10.87 Mean 182.80 179.05 36.98 15.45 10.08 19.85 18.19 16.55 18.53 15.66 18.59 31.18 24.29 16.85 29.40 11.05 10.45 Standard Error 1.89 2.10 0.75 0.27 0.36 1.66 0.38 0.64 0.37 0.53 0.56 0.21 0.14 0.50 0.18 0.17 0.42 Standard Deviation 4.23 4.69 1.68 0.38 0.71 2.35 0.84 1.43 0.83 1.06 0.79 0.41 0.28 1.00 0.25 0.23 0.59 Sample Variance 17.85 22.00 2.83 0.15 0.51 5.51 0.71 2.04 0.68 1.13 0.63 0.17 0.08 0.99 0.06 0.05 0.35 CV 2.31 2.62 4.55 2.47 7.05 11.83 4.64 8.63 4.45 6.78 4.26 1.33 1.15 5.91 0.84 2.11 5.68 T heropithecus gelada, male only, femur fLEN1 fLEN2 fPML fMLLES fGT fAPLES fHEP fHEM fHEA fPSP fPSM fDML fDAP fCPD fCML fICGP fICGM S S D L P D L D L Count 5 5 5 2 5 2 5 5 5 5 2 5 5 5 2 2 2 Range 14.37 15.02 2.64 2.81 2.47 5.47 2.19 3.66 1.82 4.93 3.67 1.34 1.92 3.11 1.69 1.53 1.36 Minimum 204.96 198.18 40.16 16.38 12.28 18.58 19.73 17.07 19.97 16.36 20.47 35.74 28.32 17.18 34.06 12.23 10.8 Maximum 219.33 213.2 42.8 19.19 14.75 24.05 21.92 20.73 21.79 21.29 24.14 37.08 30.24 20.29 35.75 13.76 12.16 Mean 211.99 204.17 41.45 17.79 13.61 21.32 20.80 18.97 20.85 18.48 22.31 36.20 29.32 19.04 34.91 13.00 11.48 Standard Error 2.53 2.69 0.52 1.41 0.46 2.74 0.37 0.73 0.38 0.90 1.84 0.27 0.35 0.54 0.84 0.77 0.68 Standard Deviation 5.65 6.01 1.16 1.99 1.04 3.87 0.82 1.62 0.84 2.02 2.60 0.60 0.79 1.20 1.20 1.08 0.96 Sample Variance 31.90 36.15 1.34 3.95 1.08 14.96 0.68 2.64 0.71 4.09 6.73 0.35 0.62 1.43 1.43 1.17 0.92 CV 2.66 2.94 2.79 11.17 7.63 18.15 3.96 8.56 4.04 10.95 11.63 1.65 2.69 6.28 3.42 8.33 8.38 193 Femoral Measures of Variance, Split Sexes Macaca fascicularis, female only, femur fLEN1 fLEN2 fPML fMLLES fGT fAPLES fHEP fHEM fHEAP fPSPD fPSML fDML fDAP fCPD fCML fICGP fICGM S S D L D L Count 6 6 6 2 6 2 6 6 6 6 2 6 6 6 2 2 2 Range 16.58 14.56 4.05 4.16 1.29 0.2 1.79 4.36 1.44 1.87 1.17 2.56 2.73 2.06 0.87 1.17 1.08 Minimum 113.27 112.97 19.77 7.98 5.11 8.75 9.85 8.5 10.28 8.83 7.85 16.79 13.24 9.95 16.03 6.05 4.9 Maximum 129.85 127.53 23.82 12.14 6.4 8.95 11.64 12.86 11.72 10.7 9.02 19.35 15.97 12.01 16.9 7.22 5.98 Mean 124.76 122.82 21.42 10.06 5.77 8.85 10.75 10.85 10.88 9.78 8.44 18.21 14.43 10.63 16.47 6.64 5.44 Standard Error 2.77 2.41 0.60 2.08 0.24 0.10 0.28 0.76 0.24 0.30 0.59 0.38 0.38 0.30 0.43 0.59 0.54 Standard Deviation 6.78 5.91 1.46 2.94 0.60 0.14 0.69 1.86 0.58 0.74 0.83 0.93 0.94 0.74 0.62 0.83 0.76 Sample Variance 45.92 34.92 2.14 8.65 0.36 0.02 0.48 3.47 0.34 0.55 0.68 0.86 0.88 0.55 0.38 0.68 0.58 CV 5.43 4.81 6.83 29.24 10.34 1.60 6.45 17.17 5.32 7.59 9.81 5.10 6.49 6.97 3.74 12.47 14.04 M acaca fascicularis, male only, femur fLEN1 fLEN fPML fMLLES fGT fAPLES fHEP fHEM fHEA fPSP fPSM fDML fDAP fCPD fCML fICGP fICGM 2 S S D L P D L D L Count 4 4 5 3 5 3 5 5 5 4 3 4 4 4 3 3 3 Range 38.71 35.79 5.91 3.85 1.77 1.52 2.17 3.21 1.83 6.24 3.85 4.2 6.41 2.52 5.1 1.53 1.76 Minimum 130.35 127.66 24.77 14.11 6.7 11.17 11.83 10.26 12.45 9.71 9.1 20 15.3 10.84 18.79 6.87 5.28 Maximum 169.06 163.45 30.68 17.96 8.47 12.69 14 13.47 14.28 15.95 12.95 24.2 21.71 13.36 23.89 8.4 7.04 Mean 147.01 143.24 26.92 15.83 7.36 11.72 12.72 12.20 13.24 13.26 10.88 22.00 18.47 12.34 22.15 7.75 6.28 Standard Error 8.16 7.55 1.12 1.13 0.32 0.49 0.39 0.60 0.38 1.50 1.12 1.15 1.38 0.62 1.68 0.46 0.52 Standard Deviation 16.32 15.11 2.50 1.96 0.71 0.84 0.87 1.34 0.85 3.00 1.94 2.30 2.76 1.24 2.91 0.79 0.90 Sample 228.1 Variance 266.28 7 6.27 3.83 0.51 0.71 0.75 1.78 0.72 9.03 3.77 5.28 7.63 1.53 8.45 0.62 0.82 CV 11.10 10.55 9.30 12.37 9.70 7.17 6.81 10.94 6.42 22.66 17.84 10.45 14.96 10.03 13.13 10.20 14.40 194 Femoral Measures of Variance, Split Sexes Macaca nemestrina, female only, femur fLEN1 fLEN2 fPML fMLLES fGT fAPLES fHEP fHEM fHEA fPSP fPSM fDML fDAP fCPD fCML fICGP fICGM S S D L P D L D L Count 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Range 12.28 10.84 5.42 4.55 0.04 4.27 2.82 1.74 3.55 0.21 0.51 3.58 2.22 2.27 3.52 1.56 1.06 Minimum 158.56 158.66 25.96 14.03 5.97 10.35 13.17 11.52 12.68 13.04 11.79 22.44 18.9 12.93 21.27 7.79 7.38 Maximum 170.84 169.5 31.38 18.58 6.01 14.62 15.99 13.26 16.23 13.25 12.3 26.02 21.12 15.2 24.79 9.35 8.44 Mean 164.70 164.08 28.67 16.31 5.99 12.49 14.58 12.39 14.46 13.15 12.05 24.23 20.01 14.07 23.03 8.57 7.91 Standard Error 6.14 5.42 2.71 2.27 0.02 2.14 1.41 0.87 1.78 0.11 0.26 1.79 1.11 1.14 1.76 0.78 0.53 Standard Deviation 8.68 7.67 3.83 3.22 0.03 3.02 1.99 1.23 2.51 0.15 0.36 2.53 1.57 1.61 2.49 1.10 0.75 Sample Variance 75.40 58.75 14.69 10.35 0.00 9.12 3.98 1.51 6.30 0.02 0.13 6.41 2.46 2.58 6.20 1.22 0.56 CV 5.27 4.67 13.37 19.73 0.47 24.18 13.68 9.93 17.37 1.13 2.99 10.45 7.84 11.41 10.81 12.87 9.48 M acaca nemestrina, male only, femur fLEN1 fLEN2 fPML fMLLES fGT fAPLES fHEP fHEM fHEA fPSP fPSM fDML fDAP fCPD fCML fICGP fICGM S S D L P D L D L Count 2 2 2 1 2 1 2 2 2 2 1 2 2 2 1 1 1 Range 26.46 25.66 1.27 0 1.57 0 1.19 2.44 0.78 1.43 0 0.22 0.57 1.35 0 0 0 Minimum 196.54 193.34 35.02 22.42 9.01 16.07 16.8 13.91 17.58 17.24 20.04 29.84 25.22 15.38 30.41 13.59 9.72 Maximum 223 219 36.29 22.42 10.58 16.07 17.99 16.35 18.36 18.67 20.04 30.06 25.79 16.73 30.41 13.59 9.72 Mean 209.77 206.17 35.66 22.42 9.80 16.07 17.40 15.13 17.97 17.96 20.04 29.95 25.51 16.06 30.41 13.59 9.72 Standard Error 13.23 12.83 0.63 . 0.79 . 0.59 1.22 0.39 0.72 . 0.11 0.29 0.68 . . . Standard Deviation 18.71 18.14 0.90 . 1.11 . 0.84 1.73 0.55 1.01 . 0.16 0.40 0.95 . . . Sample 329.2 Variance 350.07 2 0.81 . 1.23 . 0.71 2.98 0.30 1.02 . 0.02 0.16 0.91 . . . CV 8.92 8.80 2.52 . 11.33 . 4.84 11.40 3.07 5.63 . 0.52 1.58 5.95 . . . 195 Tibial Measures of Variance, Pooled Sexes Homo sapiens, pooled sexes, tibia tLEN1 tLEN2 tPML tPAP tLFAP tMFAP tLFML tMFML tDAP tDML tMMPD tDASM L Count 17 17 17 17 17 17 17 17 17 17 17 17 Range 87 86.5 16.12 13.95 13.95 11.57 8.34 10.18 10.53 10.15 8.92 11.58 Minimum 314.5 307 64.02 43.33 30.06 38.35 23.79 23.47 31.86 38.64 8.73 22.82 Maximum 401.5 393.5 80.14 57.28 44.01 49.92 32.13 33.65 42.39 48.79 17.65 34.4 Mean 362.41 354.03 71.98 49.47 37.08 43.34 27.57 27.63 37.48 44.66 13.35 26.33 Standard Error 6.43 6.68 1.21 0.98 0.78 1.04 0.63 0.68 0.77 0.88 0.53 0.70 Standard Deviation 26.50 27.55 5.01 4.04 3.21 4.28 2.60 2.79 3.16 3.61 2.17 2.87 Sample Variance 702.44 758.80 25.07 16.32 10.33 18.30 6.79 7.80 10.01 13.02 4.71 8.25 CV 7.31 7.78 6.96 8.17 8.67 9.87 9.45 10.11 8.44 8.08 16.25 10.91 P an troglodytes, pooled sexes, tibia tLEN1 tLEN2 tPML tPAP tLFAP tMFAP tLFML tMFML tDAP tDML tMMPD tDASM L Count 15 14 15 15 15 15 15 15 15 15 15 15 Range 62 61 13.1 10.31 9.38 12.66 5.42 6.63 8.45 13.15 5.89 12.12 Minimum 213 203.5 49.25 32.24 24.07 25.78 22.01 21.05 22.97 29.12 11.44 17.78 Maximum 275 264.5 62.35 42.55 33.45 38.44 27.43 27.68 31.42 42.27 17.33 29.9 Mean 245.90 237.00 56.82 37.28 29.59 32.04 24.06 24.11 25.94 35.37 13.58 24.15 Standard Error 4.61 4.53 0.99 0.70 0.74 0.99 0.43 0.50 0.56 0.88 0.43 0.91 Standard Deviation 17.86 16.95 3.84 2.70 2.86 3.82 1.65 1.94 2.18 3.42 1.66 3.53 Sample Variance 319.04 287.35 14.74 7.29 8.16 14.62 2.72 3.78 4.74 11.72 2.77 12.47 CV 7.26 7.15 6.76 7.24 9.65 11.94 6.85 8.06 8.39 9.68 12.26 14.63 196 Tibial Measures of Variance, Pooled Sexes Papio hamadryas, pooled sexes, tibia tLEN1 tLEN2 tPML tPAP tLFAP tMFAP tLFML tMFML tDAP tDML tMMPD tDASM L Count 20 20 35 35 35 35 23 23 20 35 23 23 Range 80.39 77.87 15.08 14.9 10.68 12.89 7.45 6.76 6.61 11.36 6.7 6.82 Minimum 184.61 175.13 31.46 23.51 17.65 18.67 13.98 12.47 18.43 18.88 5.73 12.57 Maximum 265 253 46.54 38.41 28.33 31.56 21.43 19.23 25.04 30.24 12.43 19.39 Mean 221.90 212.68 39.80 30.30 23.06 25.34 17.51 16.48 21.38 25.22 8.52 16.07 Standard Error 4.91 4.91 0.72 0.63 0.48 0.53 0.40 0.38 0.48 0.50 0.38 0.39 Standard Deviation 21.96 21.97 4.26 3.75 2.83 3.13 1.94 1.80 2.14 2.93 1.84 1.86 Sample Variance 482.21 482.49 18.17 14.09 8.03 9.80 3.77 3.25 4.57 8.58 3.38 3.45 CV 9.90 10.33 10.71 12.39 12.29 12.35 11.08 10.94 9.99 11.62 21.59 11.55 Theropithecus gelada, pooled sexes, tibia tLEN1 tLEN2 tPML tPAP tLFAP tMFAP tLFML tMFML tDAP tDML tMMPD tDASM L Count 11 11 12 12 12 12 10 10 11 12 10 10 Range 41.67 43.89 7.16 7.48 4.24 8.29 4.65 2.88 3.43 5.5 4.69 4.55 Minimum 176.33 164.11 31.67 22.37 17.92 18.15 12.67 13.33 16.07 18.92 5.74 12.46 Maximum 218 208 38.83 29.85 22.16 26.44 17.32 16.21 19.5 24.42 10.43 17.01 Mean 195.48 185.76 35.32 26.22 19.54 21.45 14.57 14.41 17.73 22.13 7.60 14.75 Standard Error 4.75 4.62 0.82 0.73 0.39 0.66 0.58 0.30 0.36 0.54 0.54 0.52 Standard Deviation 15.74 15.32 2.86 2.54 1.34 2.29 1.84 0.96 1.18 1.85 1.70 1.66 Sample Variance 247.88 234.78 8.16 6.44 1.79 5.26 3.38 0.92 1.40 3.44 2.88 2.75 CV 8.05 8.25 8.09 9.68 6.84 10.69 12.61 6.64 6.67 8.38 22.31 11.24 197 Tibial Measures of Variance, Pooled Sexes Macaca fascicularis, pooled sexes, tibia tLEN1 tLEN2 tPML tPAP tLFAP tMFAP tLFML tMFML tDAP tDML tMMPD tDASM L Count 5 5 12 12 12 12 12 12 5 12 12 12 Range 52.04 50.6 8.53 6.68 5.9 6.68 5.33 4.9 4.94 5.45 2.96 4.7 Minimum 109.21 105.1 16.83 12.02 10.82 9.77 6.17 6.6 8.56 10.57 3.36 6.28 Maximum 161.25 155.7 25.36 18.7 16.72 16.45 11.5 11.5 13.5 16.02 6.32 10.98 Mean 129.17 124.60 20.95 15.44 13.05 13.21 9.48 8.74 10.81 13.30 4.48 8.93 Standard Error 9.25 9.00 0.85 0.64 0.53 0.62 0.46 0.48 0.96 0.56 0.28 0.39 Standard Deviation 20.68 20.12 2.94 2.23 1.85 2.16 1.61 1.66 2.14 1.94 0.98 1.35 Sample Variance 427.80 404.71 8.67 4.96 3.43 4.65 2.58 2.75 4.57 3.76 0.96 1.83 CV 16.01 16.15 14.05 14.43 14.19 16.33 16.95 18.97 19.77 14.59 21.91 15.14 Macaca nemestrina, pooled sexes, tibia tLEN1 tLEN2 tPML tPAP tLFAP tMFAP tLFML tMFML tDAP tDML tMMPD tDASM L Count 4 4 9 9 9 9 8 8 4 9 8 8 Range 49.73 47.15 14.61 12.38 6.66 7.44 10.19 6.34 5.4 7.81 3.43 5.69 Minimum 146.77 140.85 21.77 15.3 12.72 13.24 7.64 8.53 11.27 13.85 4.35 7.6 Maximum 196.5 188 36.38 27.68 19.38 20.68 17.83 14.87 16.67 21.66 7.78 13.29 Mean 169.98 162.48 28.20 20.26 16.07 16.66 12.34 11.43 14.43 17.26 5.71 10.67 Standard Error 10.81 10.14 1.80 1.50 0.96 0.90 1.12 0.79 1.17 0.89 0.45 0.67 Standard Deviation 21.63 20.27 5.41 4.51 2.87 2.70 3.15 2.23 2.35 2.68 1.27 1.90 Sample Variance 467.80 411.04 29.24 20.38 8.24 7.27 9.95 4.96 5.51 7.17 1.60 3.60 CV 12.72 12.48 19.18 22.28 17.86 16.18 25.56 19.47 16.26 15.51 22.17 17.77 198 Tibial Measures of Variance, Split Sexes H omo sapiens, female only, tibia tLEN1 tLEN2 tPML tPAP tLFAP tMFAP tLFML tMFML tDAP tDML tMMPD tDASM L Count 9 9 9 9 9 9 9 9 9 9 9 9 Range 69.5 67.5 8.4 7.6 8.34 8.62 6.31 4.46 6.83 8.81 7.86 4.94 Minimum 314.5 307 64.02 43.33 30.06 38.35 23.79 23.47 31.86 38.64 8.73 22.82 Maximum 384 374.5 72.42 50.93 38.4 46.97 30.1 27.93 38.69 47.45 16.59 27.76 Mean 347.83 340.28 68.37 46.82 35.37 40.56 26.39 26.05 35.42 42.15 12.61 25.00 Standard Error 7.41 7.19 1.13 0.93 0.84 0.92 0.80 0.62 0.72 1.05 0.80 0.48 Standard Deviation 22.24 21.56 3.40 2.78 2.52 2.76 2.39 1.87 2.15 3.14 2.39 1.45 Sample Variance 494.50 464.88 11.57 7.71 6.34 7.61 5.73 3.49 4.61 9.85 5.73 2.10 CV 6.39 6.34 4.98 5.93 7.12 6.80 9.07 7.17 6.06 7.45 18.98 5.80 Homo sapiens, male only, tibia tLEN1 tLEN2 tPML tPAP tLFAP tMFAP tLFML tMFML tDAP tDML tMMPD tDASM L Count 9 9 9 9 9 9 9 9 9 9 9 9 Range 67.5 83 9.85 9.04 8.27 8.68 6.01 8.79 7.83 3.52 4.99 9.69 Minimum 334 310.5 70.29 48.24 35.74 41.24 26.12 24.86 34.56 45.27 12.66 24.71 Maximum 401.5 393.5 80.14 57.28 44.01 49.92 32.13 33.65 42.39 48.79 17.65 34.4 Mean 377.50 368.00 75.54 52.56 38.91 46.10 28.80 28.90 39.65 47.25 14.30 27.63 Standard Error 6.81 8.31 1.04 0.95 0.91 1.14 0.72 0.97 0.78 0.42 0.53 1.08 Standard Deviation 20.44 24.92 3.11 2.86 2.72 3.42 2.15 2.90 2.34 1.25 1.59 3.24 Sample Variance 417.81 620.88 9.69 8.16 7.40 11.72 4.60 8.43 5.46 1.57 2.52 10.50 CV 5.41 6.77 4.12 5.43 6.99 7.43 7.45 10.05 5.89 2.65 11.10 11.73 199 Tibial Measures of Variance, Split Sexes Pan troglodytes, female only, tibia tLEN1 tLEN2 tPML tPAP tLFAP tMFAP tLFML tMFML tDAP tDML tMMPD tDASM L Count 9 8 9 9 9 9 9 9 9 9 9 9 Range 54 52.5 12.76 7.28 9.38 11.65 5.42 5.06 8.45 7.34 5.49 11.01 Minimum 213 203.5 49.25 32.24 24.07 26.79 22.01 21.05 22.97 29.12 11.84 17.78 Maximum 267 256 62.01 39.52 33.45 38.44 27.43 26.11 31.42 36.46 17.33 28.79 Mean 241.06 230.31 55.59 36.32 29.21 31.22 23.91 23.30 25.65 33.92 13.31 22.88 Standard Error 5.45 5.85 1.24 0.81 0.98 1.25 0.53 0.48 0.89 0.80 0.56 1.07 Standard Deviation 16.36 16.55 3.72 2.42 2.94 3.74 1.59 1.43 2.66 2.40 1.69 3.21 Sample Variance 267.72 273.85 13.87 5.88 8.67 13.97 2.54 2.04 7.08 5.76 2.85 10.32 CV 6.79 7.19 6.70 6.67 10.08 11.97 6.66 6.13 10.37 7.07 12.68 14.04 Pan troglodytes, male only, tibia tLEN1 tLEN2 tPML tPAP tLFAP tMFAP tLFML tMFML tDAP tDML tMMPD tDASM L Count 6 6 6 6 6 6 6 6 6 6 6 6 Range 49.5 37 8.94 6.92 6.92 10.61 4.66 5.98 3.41 8.92 4.22 8.64 Minimum 225.5 227.5 53.41 35.63 26.35 25.78 22.01 21.7 24.31 33.35 11.44 21.26 Maximum 275 264.5 62.35 42.55 33.27 36.39 26.67 27.68 27.72 42.27 15.66 29.9 Mean 253.17 245.92 58.66 38.73 30.15 33.26 24.30 25.31 26.38 37.54 13.98 26.05 Standard Error 7.74 5.73 1.43 1.07 1.18 1.61 0.76 0.86 0.51 1.54 0.69 1.36 Standard Deviation 18.96 14.03 3.51 2.62 2.89 3.95 1.85 2.10 1.25 3.76 1.70 3.34 Sample Variance 359.37 196.74 12.31 6.85 8.34 15.63 3.44 4.41 1.56 14.16 2.88 11.16 CV 7.49 5.70 5.98 6.76 9.58 11.89 7.63 8.29 4.74 10.02 12.13 12.83 200 Tibial Measures of Variance, Split Sexes Papio hamadryas, female only, tibia tLEN1 tLEN2 tPML tPAP tLFAP tMFAP tLFML tMFML tDAP tDML tMMPD tDASM L Count 6 6 11 11 11 11 8 8 6 11 8 8 Range 39.61 40.31 6.33 4.88 5.42 5.31 2.32 3.03 2.27 5.31 4.64 2.52 Minimum 184.61 175.13 31.46 23.51 17.65 18.67 13.98 12.47 18.43 18.88 5.73 12.57 Maximum 224.22 215.44 37.79 28.39 23.07 23.98 16.3 15.5 20.7 24.19 10.37 15.09 Mean 202.32 192.72 34.44 26.32 20.01 21.98 15.24 14.39 19.00 22.03 7.39 14.07 Standard Error 7.07 7.10 0.57 0.55 0.49 0.46 0.27 0.37 0.37 0.50 0.57 0.32 Standard Deviation 17.33 17.39 1.89 1.83 1.62 1.53 0.75 1.06 0.90 1.65 1.62 0.92 Sample Variance 300.29 302.34 3.59 3.34 2.63 2.35 0.57 1.12 0.80 2.73 2.61 0.84 CV 8.56 9.02 5.50 6.95 8.10 6.98 4.93 7.34 4.71 7.50 21.89 6.50 P apio hamadryas, male only, tibia tLEN1 tLEN2 tPML tPAP tLFAP tMFAP tLFML tMFML tDAP tDML tMMPD tDASM L Count 14 14 24 24 24 24 15 15 14 24 15 15 Range 64 61 11.13 12.06 7.37 9.66 4.72 2.85 6.32 8.79 5.29 4.34 Minimum 201 192 35.41 26.35 20.96 21.9 16.71 16.38 18.72 21.45 7.14 15.05 Maximum 265 253 46.54 38.41 28.33 31.56 21.43 19.23 25.04 30.24 12.43 19.39 Mean 230.30 221.24 42.26 32.12 24.46 26.88 18.72 17.60 22.41 26.67 9.12 17.14 Standard Error 4.90 4.83 0.47 0.59 0.42 0.48 0.28 0.22 0.43 0.43 0.44 0.31 Standard Deviation 18.34 18.06 2.30 2.89 2.06 2.36 1.07 0.85 1.62 2.11 1.70 1.22 Sample Variance 336.49 326.07 5.27 8.34 4.23 5.58 1.15 0.72 2.62 4.43 2.89 1.48 CV 7.97 8.16 5.43 8.99 8.41 8.79 5.73 4.83 7.22 7.89 18.62 7.11 201 Tibial Measures of Variance, Split Sexes Theropithecus gelada, female only, tibia tLEN1 tLEN2 tPML tPAP tLFAP tMFAP tLFML tMFML tDAP tDML tMMPD tDASM L Count 5 5 5 5 5 5 4 4 5 5 4 4 Range 7.2 11.69 1.37 2.58 0.72 2.96 1.12 0.6 1.26 2.29 2.83 1.63 Minimum 176.33 164.11 31.67 22.37 17.92 18.15 12.77 13.33 16.07 18.92 5.74 12.46 Maximum 183.53 175.8 33.04 24.95 18.64 21.11 13.89 13.93 17.33 21.21 8.57 14.09 Mean 179.92 170.86 32.27 23.89 18.41 19.87 13.47 13.62 16.72 20.33 7.22 13.30 Standard Error 1.35 2.05 0.27 0.59 0.13 0.49 0.24 0.14 0.25 0.43 0.71 0.37 Standard Deviation 3.01 4.59 0.60 1.32 0.30 1.09 0.49 0.28 0.56 0.97 1.42 0.73 Sample Variance 9.05 21.08 0.36 1.74 0.09 1.18 0.24 0.08 0.31 0.94 2.01 0.54 CV 1.67 2.69 1.86 5.52 1.62 5.48 3.61 2.03 3.35 4.78 19.65 5.52 Theropithecus gelada, male only, tibia tLEN1 tLEN2 tPML tPAP tLFAP tMFAP tLFML tMFML tDAP tDML tMMPD tDASM L Count 6 6 7 7 7 7 6 6 6 7 6 6 Range 18.28 16.83 3.12 4.5 3.24 6.42 4.65 2.66 1.82 2.51 4.01 3.67 Minimum 199.72 191.17 35.71 25.35 18.92 20.02 12.67 13.55 17.68 21.91 6.42 13.34 Maximum 218 208 38.83 29.85 22.16 26.44 17.32 16.21 19.5 24.42 10.43 17.01 Mean 208.44 198.18 37.50 27.88 20.35 22.58 15.30 14.94 18.57 23.42 7.86 15.71 Standard Error 2.74 2.75 0.45 0.64 0.44 0.87 0.85 0.36 0.34 0.38 0.79 0.55 Standard Deviation 6.71 6.75 1.19 1.70 1.18 2.29 2.08 0.88 0.82 1.01 1.94 1.36 Sample Variance 45.08 45.53 1.42 2.89 1.38 5.26 4.34 0.77 0.68 1.02 3.77 1.84 CV 3.22 3.40 3.17 6.10 5.78 10.16 13.62 5.86 4.43 4.32 24.73 8.65 202 Tibial Measures of Variance, Split Sexes Macaca fascicularis, female only, tibia tLEN1 tLEN2 tPML tPAP tLFAP tMFAP tLFML tMFML tDAP tDML tMMPD tDASM L Count 2 2 6 6 6 6 6 6 2 6 6 6 Range 0.180 0.218 0.117 0.128 0.096 0.220 0.158 0.039 0.002 0.114 0.115 0.189 Minimum 8.190 7.882 1.219 0.883 0.772 0.733 0.463 0.495 0.642 0.773 0.232 0.451 Maximum 8.370 8.099 1.336 1.011 0.867 0.953 0.620 0.534 0.644 0.887 0.347 0.640 Mean 8.280 7.990 1.290 0.950 0.816 0.813 0.572 0.509 0.643 0.821 0.274 0.553 Standard Error 0.090 0.109 0.018 0.022 0.015 0.036 0.024 0.006 0.001 0.020 0.018 0.025 Standard Deviation 0.127 0.154 0.045 0.055 0.038 0.087 0.059 0.015 0.002 0.048 0.043 0.061 Sample Variance 0.016 0.024 0.002 0.003 0.001 0.008 0.003 0.000 0.000 0.002 0.002 0.004 CV 1.537 1.927 3.514 5.761 4.630 10.700 10.248 2.933 0.252 5.883 15.844 10.986 Macaca fascicularis, male only, tibia tLEN1 tLEN2 tPML tPAP tLFAP tMFAP tLFML tMFML tDAP tDML tMMPD tDASM L Count 3 3 6 6 6 6 6 6 3 6 6 6 Range 0.645 0.611 0.118 0.093 0.102 0.136 0.069 0.081 0.010 0.128 0.129 0.076 Minimum 7.193 6.958 1.211 0.892 0.711 0.712 0.550 0.496 0.647 0.736 0.212 0.499 Maximum 7.839 7.569 1.329 0.985 0.813 0.848 0.619 0.577 0.656 0.863 0.341 0.575 Mean 7.478 7.210 1.264 0.932 0.776 0.795 0.580 0.549 0.651 0.800 0.272 0.536 Standard Error 0.190 0.184 0.019 0.016 0.018 0.021 0.010 0.013 0.003 0.021 0.022 0.011 Standard Deviation 0.329 0.319 0.046 0.039 0.043 0.052 0.025 0.031 0.005 0.051 0.053 0.028 Sample Variance 0.108 0.102 0.002 0.002 0.002 0.003 0.001 0.001 0.000 0.003 0.003 0.001 CV 4.401 4.427 3.610 4.190 5.561 6.489 4.237 5.719 0.753 6.406 19.484 5.188 203 Tibial Measures of Variance, Split Sexes Macaca nemestrina, female only, tibia tLEN1 tLEN2 tPML tPAP tLFAP tMFAP tLFML tMFML tDAP tDML tMMPD tDASM L Count 2 2 4 4 4 4 4 4 2 4 4 4 Range 0.753 0.714 0.062 0.055 0.082 0.055 0.063 0.062 0.032 0.107 0.102 0.118 Minimum 7.522 7.227 1.255 0.863 0.674 0.747 0.551 0.524 0.635 0.761 0.232 0.475 Maximum 8.275 7.941 1.317 0.918 0.756 0.801 0.614 0.586 0.668 0.868 0.334 0.594 Mean 7.899 7.584 1.279 0.884 0.723 0.781 0.585 0.543 0.652 0.813 0.284 0.535 Standard Error 0.376 0.357 0.013 0.013 0.017 0.012 0.013 0.015 0.016 0.022 0.027 0.025 Standard Deviation 0.532 0.505 0.027 0.025 0.035 0.024 0.026 0.029 0.023 0.045 0.055 0.049 Sample Variance 0.283 0.255 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.003 0.002 CV 6.739 6.659 2.090 2.840 4.790 3.050 4.460 5.393 3.515 5.486 19.205 9.243 Macaca nemestrina, female only, tibia tLEN1 tLEN2 tPML tPAP tLFAP tMFAP tLFML tMFML tDAP tDML tMMPD tDASM L Count 2 2 5 5 5 5 4 4 2 5 4 4 Range 1.187 1.202 0.194 0.262 0.077 0.066 0.265 0.100 0.009 0.081 0.083 0.108 Minimum 7.123 6.748 1.222 0.895 0.731 0.740 0.429 0.479 0.661 0.762 0.230 0.427 Maximum 8.310 7.951 1.416 1.157 0.808 0.807 0.694 0.579 0.670 0.843 0.313 0.534 Mean 7.717 7.349 1.336 0.985 0.769 0.775 0.572 0.536 0.666 0.802 0.257 0.477 Standard Error 0.593 0.601 0.035 0.047 0.014 0.013 0.056 0.022 0.005 0.016 0.019 0.023 Standard Deviation 0.839 0.850 0.078 0.105 0.031 0.029 0.112 0.045 0.007 0.035 0.038 0.045 Sample Variance 0.704 0.723 0.006 0.011 0.001 0.001 0.013 0.002 0.000 0.001 0.001 0.002 CV 10.875 11.569 5.852 10.641 3.992 3.777 19.647 8.345 0.985 4.400 14.596 9.512 204 Humeral Measures of Variance, Pooled Sexes, GM adjusted Homo sapiens, pooled sexes, humerus hLEN hLEN hLEN hPM hPAP hHEA hHEM hLEN4 hDM hDASM hDH hTRP hTRM hDAP 1 2 3 L P L L L A D L Count 18 18 18 18 18 18 18 18 18 18 18 18 18 18 Range 0.809 0.740 0.724 0.144 0.116 0.192 0.174 0.737 0.192 0.146 0.141 0.069 0.103 0.059 Minimum 4.345 4.456 4.521 0.701 0.671 0.518 0.516 1.394 0.829 0.561 0.624 0.317 0.354 0.377 Maximum 5.154 5.195 5.246 0.845 0.787 0.710 0.690 2.131 1.021 0.707 0.766 0.387 0.458 0.436 Mean 4.744 4.852 4.920 0.758 0.720 0.669 0.627 1.792 0.916 0.618 0.674 0.358 0.399 0.406 Standard Error 0.050 0.049 0.049 0.008 0.007 0.010 0.011 0.050 0.012 0.010 0.009 0.006 0.007 0.004 Standard Deviation 0.211 0.210 0.210 0.032 0.030 0.044 0.048 0.214 0.049 0.041 0.038 0.024 0.029 0.016 Sample Variance 0.044 0.044 0.044 0.001 0.001 0.002 0.002 0.046 0.002 0.002 0.001 0.001 0.001 0.000 CV 4.446 4.328 4.267 4.233 4.181 6.615 7.705 11.937 5.360 6.694 5.587 6.614 7.316 3.887 Pan troglodytes, pooled sexes, humerus hLEN hLEN hLEN hPML hPA hHEAP hHEM hLEN hDML hDASM hDHA hTRP hTRM hDAP 1 2 3 P L 4 L D L Count 14 14 14 15 15 15 15 15 15 15 15 15 15 15 Range 0.569 0.614 0.633 0.090 0.071 0.064 0.114 0.437 0.147 0.067 0.073 0.122 0.082 0.061 Minimum 4.406 4.406 4.444 0.666 0.656 0.595 0.563 1.449 0.892 0.669 0.732 0.310 0.354 0.416 Maximum 4.976 5.020 5.077 0.757 0.727 0.658 0.677 1.887 1.039 0.736 0.805 0.432 0.437 0.477 Mean 4.725 4.767 4.816 0.700 0.685 0.632 0.602 1.645 0.970 0.699 0.778 0.361 0.379 0.440 Standard Error 0.040 0.045 0.049 0.007 0.005 0.005 0.007 0.037 0.010 0.004 0.005 0.009 0.005 0.005 Standard Deviation 0.152 0.167 0.182 0.027 0.021 0.020 0.028 0.142 0.040 0.017 0.021 0.035 0.019 0.019 Sample Variance 0.023 0.028 0.033 0.001 0.000 0.000 0.001 0.020 0.002 0.000 0.000 0.001 0.000 0.000 CV 3.207 3.506 3.772 3.924 3.060 3.222 4.704 8.601 4.111 2.441 2.667 9.773 5.078 4.232 205 Humeral Measures of Variance, Pooled Sexes, GM adjusted P apio hamadryas, pooled sexes, humerus hLEN hLEN hLEN hPML hPA hHEAP hHEM hLEN hDML hDASM hDHA hTRP hTRM hDAP 1 2 3 P L 4 L D L Count 21 21 7 22 22 21 21 22 23 23 19 23 23 23 Range 0.789 0.859 0.378 0.091 0.099 0.191 0.111 0.584 0.166 0.119 0.336 0.141 0.152 0.099 Minimum 4.519 4.431 4.672 0.641 0.654 0.472 0.460 1.295 0.764 0.554 0.668 0.369 0.306 0.520 Maximum 5.308 5.290 5.050 0.732 0.752 0.662 0.571 1.879 0.930 0.672 1.004 0.510 0.458 0.619 Mean 4.873 4.827 4.821 0.694 0.698 0.588 0.541 1.520 0.863 0.627 0.761 0.445 0.355 0.562 Standard Error 0.045 0.046 0.050 0.005 0.006 0.010 0.005 0.028 0.008 0.006 0.017 0.007 0.009 0.005 Standard Deviation 0.206 0.209 0.132 0.023 0.027 0.045 0.024 0.131 0.037 0.030 0.076 0.035 0.045 0.023 Sample Variance 0.042 0.044 0.018 0.001 0.001 0.002 0.001 0.017 0.001 0.001 0.006 0.001 0.002 0.001 CV 4.227 4.323 2.745 3.278 3.836 7.606 4.411 8.628 4.323 4.714 9.961 7.947 12.669 4.025 Theropithecus gelada, pooled sexes, humerus hLEN hLEN2 hLEN3 hPML hPA hHEA hHEM hLEN hDM hDASM hDHA hTRP hTRM hDA 1 P P L 4 L L D L P Count 13 13 4 12 13 9 9 13 13 13 10 13 13 13 Range 0.471 0.456 0.282 0.061 0.105 0.130 0.054 0.396 0.076 0.063 0.072 0.072 0.168 0.051 Minimum 4.665 4.637 4.748 0.646 0.700 0.586 0.517 1.237 0.814 0.567 0.694 0.411 0.292 0.541 Maximum 5.136 5.092 5.030 0.707 0.805 0.716 0.571 1.633 0.891 0.630 0.766 0.483 0.460 0.592 Mean 4.929 4.893 4.897 0.681 0.744 0.636 0.541 1.483 0.851 0.598 0.732 0.448 0.349 0.568 Standard Error 0.036 0.036 0.058 0.005 0.011 0.013 0.007 0.028 0.006 0.006 0.006 0.005 0.014 0.004 Standard Deviation 0.129 0.128 0.116 0.017 0.038 0.039 0.021 0.101 0.020 0.020 0.019 0.018 0.050 0.015 Sample Variance 0.017 0.016 0.014 0.000 0.001 0.002 0.000 0.010 0.000 0.000 0.000 0.000 0.003 0.000 CV 2.624 2.621 2.375 2.475 5.132 6.122 3.945 6.835 2.384 3.337 2.661 4.109 14.423 2.648 206 Humeral Measures of Variance, Pooled Sexes, GM adjusted Macaca fascicularis, pooled sexes, humerus hLEN1 hLEN hLEN hPM hPAP hHEAP hHEM hLEN hDM hDASM hDHA hTRP hTRM hDAP 2 3 L L 4 L L D L Count 9 9 5 9 9 9 9 11 11 11 11 11 11 11 Range 1.293 1.291 1.304 0.060 0.074 0.069 0.084 0.656 0.152 0.122 0.241 0.085 0.097 0.078 Minimum 4.596 4.593 4.639 0.637 0.637 0.536 0.523 1.236 0.766 0.559 0.655 0.361 0.317 0.486 Maximum 5.889 5.884 5.944 0.697 0.711 0.605 0.607 1.892 0.918 0.681 0.897 0.447 0.414 0.564 Mean 5.099 5.110 5.147 0.667 0.680 0.577 0.554 1.619 0.866 0.625 0.750 0.413 0.364 0.515 Standard Error 0.123 0.124 0.233 0.007 0.008 0.009 0.010 0.062 0.011 0.012 0.018 0.008 0.009 0.007 Standard Deviation 0.369 0.372 0.520 0.022 0.025 0.026 0.030 0.206 0.037 0.041 0.060 0.025 0.029 0.025 Sample Variance 0.136 0.138 0.270 0.000 0.001 0.001 0.001 0.042 0.001 0.002 0.004 0.001 0.001 0.001 CV 7.233 7.271 10.102 3.305 3.673 4.531 5.340 12.690 4.307 6.502 7.954 6.129 8.052 4.823 Macaca nemestrina, pooled sexes, humerus hLEN1 hLEN2 hLEN3 hPML hPAP hHEAP hHEM hLEN4 hDML hDASM hDHA hTRPD hTRM hDAP L L L Count 3 3 2 3 3 3 3 3 3 3 3 3 3 3 Range 0.644 0.698 0.308 0.071 0.031 0.055 0.114 0.191 0.023 0.045 0.085 0.031 0.030 0.009 Minimum 4.709 4.626 4.740 0.657 0.656 0.566 0.527 1.375 0.861 0.605 0.683 0.414 0.347 0.544 Maximum 5.352 5.324 5.048 0.728 0.687 0.621 0.640 1.566 0.884 0.650 0.768 0.445 0.377 0.552 Mean 5.035 4.999 4.894 0.690 0.670 0.588 0.584 1.488 0.874 0.633 0.737 0.434 0.359 0.548 Standard Error 0.186 0.203 0.154 0.021 0.009 0.017 0.033 0.058 0.007 0.014 0.027 0.010 0.009 0.002 Standard Deviation 0.322 0.352 0.218 0.036 0.016 0.029 0.057 0.100 0.012 0.024 0.047 0.017 0.016 0.004 Sample Variance 0.104 0.124 0.047 0.001 0.000 0.001 0.003 0.010 0.000 0.001 0.002 0.000 0.000 0.000 CV 6.394 7.035 4.449 5.180 2.323 4.934 9.744 6.703 1.328 3.843 6.414 3.984 4.469 0.785 207 Humeral Measures of Variance, Split Sexes, GM adjusted H omo sapiens, female only, humerus hLEN hLEN hLEN hPML hPAP hHEA hHEM hLEN hDML hDASM hDHA hTRP hTRM hDAP 1 2 3 P L 4 L D L Count 9 9 9 9 9 9 9 9 9 9 9 9 9 9 Range 0.552 0.445 0.448 0.066 0.068 0.098 0.160 0.657 0.151 0.085 0.059 0.057 0.103 0.059 Minimum 4.602 4.750 4.798 0.722 0.676 0.612 0.516 1.394 0.829 0.561 0.624 0.323 0.354 0.377 Maximum 5.154 5.195 5.246 0.788 0.744 0.710 0.676 2.051 0.980 0.646 0.683 0.381 0.458 0.436 Mean 4.848 4.954 5.017 0.760 0.716 0.673 0.615 1.801 0.906 0.614 0.653 0.360 0.400 0.401 Standard Error 0.055 0.051 0.052 0.007 0.007 0.010 0.019 0.069 0.017 0.008 0.008 0.007 0.012 0.006 Standard Deviation 0.166 0.153 0.157 0.021 0.020 0.031 0.056 0.207 0.051 0.025 0.024 0.022 0.037 0.019 Sample Variance 0.028 0.023 0.025 0.000 0.000 0.001 0.003 0.043 0.003 0.001 0.001 0.000 0.001 0.000 CV 3.431 3.084 3.122 2.726 2.799 4.627 9.163 11.490 5.651 4.032 3.663 6.106 9.152 4.719 Homo sapiens, male only, humerus hLEN hLEN hLEN hPML hPAP hHEA hHEM hLEN hDML hDASM hDHA hTRP hTRM hDAP 1 2 3 P L 4 L D L Count 9 9 9 9 9 9 9 9 9 9 9 9 9 9 Range 0.625 0.644 0.636 0.144 0.116 0.179 0.122 0.699 0.167 0.142 0.122 0.069 0.062 0.028 Minimum 4.345 4.456 4.521 0.701 0.671 0.518 0.568 1.432 0.854 0.565 0.644 0.317 0.369 0.399 Maximum 4.970 5.100 5.157 0.845 0.787 0.697 0.690 2.131 1.021 0.707 0.766 0.387 0.431 0.426 Mean 4.640 4.749 4.822 0.756 0.724 0.664 0.638 1.783 0.927 0.623 0.694 0.357 0.397 0.412 Standard Error 0.069 0.072 0.073 0.014 0.013 0.019 0.013 0.078 0.016 0.018 0.013 0.009 0.007 0.003 Standard Deviation 0.206 0.216 0.218 0.042 0.039 0.056 0.038 0.233 0.047 0.055 0.039 0.027 0.022 0.010 Sample Variance 0.043 0.047 0.048 0.002 0.001 0.003 0.001 0.054 0.002 0.003 0.001 0.001 0.000 0.000 CV 4.445 4.548 4.525 5.532 5.330 8.436 6.005 13.061 5.122 8.776 5.572 7.454 5.434 2.536 208 Humeral Measures of Variance, Split Sexes, GM adjusted P an troglodytes, female only, humerus hLEN hLEN hLEN hPML hPAP hHEA hHEM hLEN hDM hDASM hDHA hTRP hTRM hDAP 1 2 3 P L 4 L L D L Count 8 8 8 9 9 9 9 9 9 9 9 9 9 9 Range 0.448 0.474 0.513 0.078 0.071 0.063 0.077 0.402 0.109 0.037 0.058 0.097 0.082 0.061 Minimum 4.528 4.546 4.564 0.666 0.656 0.595 0.563 1.485 0.892 0.675 0.747 0.310 0.354 0.416 Maximum 4.976 5.020 5.077 0.744 0.727 0.658 0.639 1.887 1.001 0.713 0.805 0.406 0.437 0.477 Mean 4.750 4.794 4.852 0.699 0.681 0.630 0.599 1.706 0.957 0.698 0.780 0.351 0.384 0.441 Standard Error 0.053 0.058 0.063 0.009 0.007 0.008 0.007 0.046 0.012 0.004 0.006 0.011 0.008 0.007 Standard Deviation 0.149 0.163 0.178 0.027 0.022 0.024 0.021 0.138 0.036 0.012 0.017 0.033 0.023 0.021 Sample Variance 0.022 0.027 0.032 0.001 0.000 0.001 0.000 0.019 0.001 0.000 0.000 0.001 0.001 0.000 CV 3.139 3.409 3.675 3.822 3.203 3.785 3.574 8.071 3.800 1.785 2.170 9.297 5.999 4.742 P an troglodytes, male only, humerus hLEN hLEN hLEN hPML hPAP hHEA hHEM hLEN hDM hDASM hDHA hTRP hTRM hDAP 1 2 3 P L 4 L L D L Count 6 6 6 6 6 6 6 6 6 6 6 6 6 6 Range 0.448 0.498 0.551 0.080 0.053 0.036 0.111 0.271 0.102 0.067 0.070 0.092 0.024 0.044 Minimum 4.406 4.406 4.444 0.676 0.660 0.622 0.566 1.449 0.936 0.669 0.732 0.340 0.362 0.418 Maximum 4.855 4.904 4.995 0.757 0.714 0.658 0.677 1.721 1.039 0.736 0.802 0.432 0.386 0.462 Mean 4.692 4.732 4.767 0.701 0.690 0.636 0.607 1.555 0.989 0.701 0.776 0.375 0.371 0.440 Standard Error 0.066 0.074 0.078 0.013 0.008 0.006 0.016 0.040 0.016 0.010 0.011 0.015 0.003 0.007 Standard Deviation 0.162 0.181 0.190 0.031 0.020 0.015 0.038 0.097 0.040 0.024 0.027 0.037 0.008 0.017 Sample Variance 0.026 0.033 0.036 0.001 0.000 0.000 0.001 0.009 0.002 0.001 0.001 0.001 0.000 0.000 CV 3.455 3.818 3.994 4.436 2.911 2.372 6.311 6.241 4.015 3.368 3.496 9.755 2.198 3.757 209 Humeral Measures of Variance, Split Sexes, GM adjusted Papio hamadryas, female only, humerus hLEN1 hLEN2 hLEN3 hPML hPAP hHEAP hHEML hLEN4 hDML hDASML hDHA hTRPD hTRML hDAP Count 7 7 2 8 8 8 8 8 8 8 7 8 8 8 Range 0.585 0.610 0.311 0.063 0.079 0.059 0.100 0.253 0.088 0.090 0.316 0.096 0.141 0.053 Minimum 4.688 4.609 4.739 0.649 0.654 0.558 0.460 1.342 0.821 0.557 0.688 0.373 0.317 0.520 Maximum 5.272 5.218 5.050 0.712 0.733 0.616 0.560 1.595 0.910 0.647 1.004 0.468 0.458 0.573 Mean 4.955 4.898 4.894 0.686 0.686 0.586 0.529 1.497 0.859 0.616 0.784 0.427 0.364 0.554 Standard Error 0.078 0.080 0.155 0.007 0.010 0.007 0.011 0.029 0.010 0.011 0.040 0.012 0.021 0.006 Standard Deviation 0.207 0.213 0.220 0.019 0.028 0.019 0.030 0.081 0.028 0.030 0.106 0.033 0.060 0.018 Sample Variance 0.043 0.045 0.048 0.000 0.001 0.000 0.001 0.007 0.001 0.001 0.011 0.001 0.004 0.000 CV 4.172 4.341 4.490 2.831 4.050 3.178 5.710 5.417 3.279 4.831 13.505 7.749 16.531 3.298 Papio hamadryas, male only, humerus hLEN hLEN hLEN hPML hPAP hHEA hHEM hLEN hDM hDASM hDHA hTRP hTRM hDAP 1 2 3 P L 4 L L D L Count 14 14 5 14 14 13 13 14 15 15 12 15 15 15 Range 0.789 0.859 0.280 0.091 0.094 0.191 0.057 0.584 0.166 0.119 0.148 0.141 0.112 0.095 Minimum 4.519 4.431 4.672 0.641 0.658 0.472 0.515 1.295 0.764 0.554 0.668 0.369 0.306 0.524 Maximum 5.308 5.290 4.952 0.732 0.752 0.662 0.571 1.879 0.930 0.672 0.815 0.510 0.418 0.619 Mean 4.832 4.791 4.792 0.699 0.705 0.588 0.548 1.533 0.865 0.632 0.748 0.454 0.350 0.567 Standard Error 0.054 0.055 0.046 0.006 0.007 0.016 0.004 0.041 0.011 0.007 0.015 0.009 0.009 0.006 Standard Deviation 0.200 0.205 0.102 0.024 0.024 0.056 0.016 0.154 0.042 0.029 0.053 0.034 0.036 0.024 Sample Variance 0.040 0.042 0.010 0.001 0.001 0.003 0.000 0.024 0.002 0.001 0.003 0.001 0.001 0.001 CV 4.144 4.282 2.136 3.396 3.465 9.501 2.933 10.046 4.874 4.572 7.025 7.441 10.254 4.217 210 Humeral Measures of Variance, Split Sexes, GM adjusted Theropithecus gelada, female only, humerus hLEN hLEN hLEN hPML hPAP hHEA hHEM hLEN hDM hDASM hDHA hTRP hTRM hDAP 1 2 3 P L 4 L L D L Count 5 5 2 5 5 4 4 5 5 5 4 5 5 5 Range 0.471 0.456 0.141 0.014 0.052 0.049 0.030 0.301 0.054 0.057 0.025 0.027 0.149 0.051 Minimum 4.665 4.637 4.748 0.666 0.700 0.605 0.517 1.332 0.814 0.573 0.721 0.435 0.311 0.541 Maximum 5.136 5.092 4.889 0.679 0.752 0.654 0.547 1.633 0.868 0.630 0.746 0.462 0.460 0.592 Mean 4.887 4.866 4.819 0.673 0.719 0.631 0.534 1.513 0.846 0.601 0.734 0.449 0.369 0.564 Standard Error 0.080 0.078 0.070 0.002 0.009 0.010 0.006 0.050 0.011 0.010 0.005 0.005 0.027 0.009 Standard Deviation 0.180 0.174 0.100 0.006 0.020 0.020 0.012 0.112 0.025 0.021 0.010 0.011 0.060 0.021 Sample Variance 0.032 0.030 0.010 0.000 0.000 0.000 0.000 0.013 0.001 0.000 0.000 0.000 0.004 0.000 CV 3.678 3.571 2.068 0.817 2.717 3.213 2.295 7.411 2.975 3.532 1.392 2.418 16.382 3.717 Theropithecus gelada, male only, humerus hLEN hLEN hLEN hPML hPAP hHEA hHEM hLEN hDM hDASM hDHA hTRP hTRML hDAP 1 2 3 P L 4 L L D Count 8 8 2 7 8 5 5 8 8 8 6 8 8 8 Range 0.268 0.284 0.108 0.061 0.093 0.130 0.054 0.310 0.054 0.053 0.072 0.072 0.136 0.031 Minimum 4.818 4.784 4.922 0.646 0.711 0.586 0.517 1.237 0.837 0.567 0.694 0.411 0.292 0.554 Maximum 5.085 5.068 5.030 0.707 0.805 0.716 0.571 1.547 0.891 0.620 0.766 0.483 0.427 0.585 Mean 4.954 4.910 4.976 0.687 0.760 0.640 0.547 1.464 0.855 0.595 0.731 0.448 0.337 0.571 Standard Error 0.032 0.036 0.054 0.008 0.014 0.023 0.012 0.034 0.006 0.007 0.010 0.008 0.015 0.004 Standard Deviation 0.091 0.100 0.076 0.020 0.039 0.052 0.026 0.097 0.018 0.020 0.025 0.023 0.042 0.011 Sample Variance 0.008 0.010 0.006 0.000 0.002 0.003 0.001 0.009 0.000 0.000 0.001 0.001 0.002 0.000 CV 1.832 2.046 1.531 2.966 5.174 8.075 4.840 6.616 2.068 3.391 3.399 5.061 12.612 1.909 211 Humeral Measures of Variance, Split Sexes, GM adjusted M acaca fascicularis, female only, humerus hLEN hLEN hLEN hPML hPAP hHEAP hHEM hLEN hDML hDASM hDHA hTRP hTRM hDAP 1 2 3 L 4 L D L Count 5 5 2 5 5 5 5 6 6 6 6 6 6 6 Range 0.853 0.833 0.589 0.057 0.060 0.069 0.060 0.656 0.119 0.122 0.108 0.063 0.052 0.063 Minimum 5.036 5.051 5.355 0.640 0.651 0.536 0.523 1.236 0.766 0.559 0.655 0.384 0.329 0.486 Maximum 5.889 5.884 5.944 0.697 0.711 0.605 0.584 1.892 0.885 0.681 0.763 0.447 0.381 0.549 Mean 5.322 5.344 5.649 0.666 0.676 0.577 0.545 1.655 0.849 0.621 0.722 0.410 0.357 0.506 Standard Error 0.150 0.144 0.294 0.010 0.010 0.015 0.013 0.107 0.017 0.018 0.017 0.009 0.008 0.010 Standard Deviation 0.336 0.321 0.416 0.023 0.022 0.034 0.028 0.262 0.042 0.044 0.042 0.021 0.019 0.023 Sample Variance 0.113 0.103 0.173 0.001 0.000 0.001 0.001 0.069 0.002 0.002 0.002 0.000 0.000 0.001 CV 6.313 6.007 7.371 3.379 3.256 5.821 5.218 15.833 4.946 7.124 5.810 5.136 5.337 4.610 Macaca fascicularis, male only, humerus hLEN hLEN hLEN hPML hPAP hHEA hHEM hLEN hDM hDASM hDHA hTRP hTRML hDAP 1 2 3 P L 4 L L D Count 4 4 3 4 4 4 4 5 5 5 5 5 5 5 Range 0.353 0.341 0.362 0.054 0.067 0.032 0.069 0.334 0.046 0.099 0.148 0.082 0.097 0.064 Minimum 4.596 4.593 4.639 0.637 0.637 0.561 0.538 1.408 0.872 0.569 0.748 0.361 0.317 0.499 Maximum 4.949 4.935 5.001 0.691 0.705 0.593 0.607 1.742 0.918 0.667 0.897 0.443 0.414 0.564 Mean 4.821 4.817 4.812 0.667 0.684 0.577 0.567 1.577 0.885 0.628 0.783 0.416 0.372 0.527 Standard Error 0.082 0.079 0.105 0.012 0.016 0.009 0.015 0.056 0.009 0.018 0.029 0.014 0.018 0.011 Standard Deviation 0.164 0.158 0.182 0.025 0.031 0.018 0.030 0.125 0.019 0.041 0.064 0.032 0.039 0.024 Sample Variance 0.027 0.025 0.033 0.001 0.001 0.000 0.001 0.016 0.000 0.002 0.004 0.001 0.002 0.001 CV 3.400 3.278 3.774 3.728 4.560 3.092 5.307 7.900 2.168 6.448 8.219 7.679 10.531 4.498 212 Humeral Measures of Variance, Split Sexes, GM adjusted Macaca nemestrina, female only, humerus hLEN hLEN hLEN hPML hPAP hHEA hHEM hLEN hDM hDASM hDHA hTRP hTRM hDAP 1 2 3 P L 4 L L D L Count 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Range 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Minimum 5.045 5.048 5.048 0.657 0.669 0.566 0.583 1.522 0.877 0.650 0.768 0.414 0.353 0.552 Maximum 5.045 5.048 5.048 0.657 0.669 0.566 0.583 1.522 0.877 0.650 0.768 0.414 0.353 0.552 Mean 5.045 5.048 5.048 0.657 0.669 0.566 0.583 1.522 0.877 0.650 0.768 0.414 0.353 0.552 Standard Error . . . . . . . . . . . . . . Standard Deviation . . . . . . . . . . . . . . Sample Variance . . . . . . . . . . . . . . CV . . . . . . . . . . . . . . Macaca nemestrina, male only, humerus hLEN hLEN hLEN hPML hPAP hHEA hHEM hLEN hDML hDASM hDHA hTRP hTRM hDAP 1 2 3 P L 4 L D L Count 2 2 1 2 2 2 2 2 2 2 2 2 2 2 Range 0.644 0.698 0.000 0.042 0.031 0.044 0.114 0.191 0.023 0.038 0.079 0.003 0.030 0.005 Minimum 4.709 4.626 4.740 0.686 0.656 0.577 0.527 1.375 0.861 0.605 0.683 0.442 0.347 0.544 Maximum 5.352 5.324 4.740 0.728 0.687 0.621 0.640 1.566 0.884 0.643 0.762 0.445 0.377 0.549 Mean 5.031 4.975 4.740 0.707 0.671 0.599 0.584 1.471 0.873 0.624 0.722 0.443 0.362 0.546 Standard Error 0.322 0.349 . 0.021 0.016 0.022 0.057 0.095 0.011 0.019 0.039 0.001 0.015 0.003 Standard Deviation 0.455 0.494 . 0.030 0.022 0.031 0.080 0.135 0.016 0.027 0.056 0.002 0.021 0.004 Sample Variance 0.207 0.244 . 0.001 0.000 0.001 0.006 0.018 0.000 0.001 0.003 0.000 0.000 0.000 CV 9.048 9.926 . 4.201 3.268 5.206 13.778 9.162 1.834 4.332 7.724 0.457 5.876 0.667 213 Radial Measures of Variance, Pooled Sexes, GM adjusted Homo sapiens, pooled sexes, radius rLEN1 rLEN2 rPAP rPML rNE1 rNE2 rNE3 rTUB rDML rDAP Count 18 18 18 18 18 18 18 18 18 18 Range 1.203 1.220 0.175 0.136 0.220 0.206 0.137 0.192 0.448 0.356 Minimum 5.960 6.132 0.556 0.546 0.209 0.485 0.824 0.527 0.601 0.551 Maximum 7.163 7.352 0.730 0.682 0.429 0.691 0.961 0.720 1.049 0.907 Mean 6.384 6.557 0.609 0.582 0.370 0.631 0.893 0.623 0.867 0.620 Standard Error 0.081 0.080 0.009 0.007 0.012 0.010 0.008 0.011 0.021 0.019 Standard Deviation 0.342 0.340 0.038 0.031 0.050 0.044 0.034 0.046 0.091 0.079 Sample Variance 0.117 0.115 0.001 0.001 0.002 0.002 0.001 0.002 0.008 0.006 CV 5.351 5.180 6.304 5.314 13.392 6.987 3.800 7.397 10.464 12.677 Pan troglodytes, pooled sexes, radius rLEN1 rLEN2 rPAP rPML rNE1 rNE2 rNE3 rTUB rDML rDAP Count 15 15 15 15 15 15 15 15 15 15 Range 0.661 0.588 0.105 0.069 0.200 0.133 0.127 0.378 0.126 0.120 Minimum 6.056 6.143 0.514 0.517 0.393 0.689 0.880 0.426 0.679 0.465 Maximum 6.717 6.731 0.619 0.586 0.593 0.822 1.007 0.804 0.804 0.584 Mean 6.311 6.375 0.568 0.556 0.507 0.752 0.949 0.557 0.756 0.531 Standard Error 0.055 0.055 0.008 0.007 0.014 0.010 0.011 0.026 0.009 0.010 Standard Deviation 0.213 0.213 0.030 0.026 0.053 0.040 0.042 0.100 0.036 0.037 Sample Variance 0.045 0.045 0.001 0.001 0.003 0.002 0.002 0.010 0.001 0.001 CV 3.369 3.336 5.360 4.662 10.390 5.331 4.473 18.030 4.707 6.963 214 Radial Measures of Variance, Pooled Sexes, GM adjusted Papio hamadryas, pooled sexes, radius rLEN1 rLEN2 rPAP rPML rNE1 rNE2 rNE3 rTUB rDML rDAP Count 7 18 33 33 18 7 18 7 23 23 Range 1.007 1.405 0.151 0.133 0.195 0.104 0.299 0.288 0.194 0.114 Minimum 6.929 6.747 0.520 0.501 0.201 0.532 0.656 0.675 0.641 0.550 Maximum 7.936 8.152 0.672 0.634 0.396 0.637 0.954 0.963 0.835 0.664 Mean 7.204 7.352 0.598 0.566 0.303 0.585 0.783 0.785 0.760 0.601 Standard Error 0.137 0.090 0.007 0.006 0.012 0.014 0.019 0.041 0.010 0.006 Standard Deviation 0.361 0.380 0.037 0.034 0.053 0.038 0.080 0.109 0.048 0.028 Sample Variance 0.131 0.144 0.001 0.001 0.003 0.001 0.006 0.012 0.002 0.001 CV 5.018 5.169 6.244 5.946 17.406 6.500 10.200 13.822 6.281 4.699 T heropithecus gelada, pooled sexes, radius rLEN1 rLEN2 rPAP rPML rNE1 rNE2 rNE3 rTUB rDML rDAP Count 4 11 12 12 11 4 11 4 10 10 Range 0.189 0.570 0.102 0.116 0.109 0.124 0.112 0.212 0.218 0.073 Minimum 7.598 7.819 0.548 0.556 0.222 0.446 0.650 0.881 0.592 0.579 Maximum 7.788 8.389 0.649 0.672 0.332 0.571 0.762 1.093 0.810 0.652 Mean 7.687 8.063 0.609 0.602 0.267 0.509 0.714 0.980 0.723 0.619 Standard Error 0.050 0.058 0.009 0.010 0.014 0.025 0.010 0.046 0.018 0.006 Standard Deviation 0.100 0.192 0.031 0.033 0.045 0.051 0.035 0.092 0.058 0.019 Sample Variance 0.010 0.037 0.001 0.001 0.002 0.003 0.001 0.008 0.003 0.000 CV 1.305 2.383 5.018 5.564 16.944 9.988 4.869 9.384 7.970 3.098 215 Radial Measures of Variance, Pooled Sexes, GM adjusted Macaca fascicularis, pooled sexes, radius rLEN1 rLEN2 rPAP rPML rNE1 rNE2 rNE3 rTUB rDML rDAP Count 5 5 12 12 5 5 5 5 12 12 Range 1.701 1.584 0.193 0.109 0.185 0.192 0.187 0.170 0.221 0.184 Minimum 6.260 6.530 0.476 0.501 0.308 0.613 0.813 0.660 0.632 0.489 Maximum 7.961 8.114 0.669 0.610 0.493 0.805 1.000 0.829 0.853 0.673 Mean 6.967 7.166 0.589 0.548 0.397 0.703 0.876 0.721 0.734 0.570 Standard Error 0.311 0.293 0.015 0.010 0.034 0.032 0.034 0.031 0.018 0.015 Standard Deviation 0.695 0.656 0.052 0.035 0.075 0.071 0.076 0.069 0.063 0.054 Sample Variance 0.483 0.430 0.003 0.001 0.006 0.005 0.006 0.005 0.004 0.003 CV 9.972 9.153 8.741 6.421 18.935 10.064 8.655 9.584 8.561 9.417 M acaca nemestrina, pooled sexes, radius rLEN1 rLEN2 rPAP rPML rNE1 rNE2 rNE3 rTUB rDML rDAP Count 3 3 10 10 4 3 4 3 10 10 Range 0.888 0.910 0.178 0.178 0.161 0.078 0.045 0.128 0.183 0.165 Minimum 6.915 7.150 0.482 0.468 0.255 0.565 0.821 0.606 0.705 0.489 Maximum 7.803 8.061 0.660 0.647 0.416 0.643 0.866 0.734 0.888 0.654 Mean 7.311 7.538 0.592 0.575 0.361 0.603 0.834 0.685 0.793 0.595 Standard Error 0.261 0.271 0.016 0.018 0.036 0.023 0.011 0.040 0.019 0.016 Standard Deviation 0.452 0.470 0.051 0.058 0.072 0.039 0.021 0.069 0.059 0.049 Sample Variance 0.204 0.221 0.003 0.003 0.005 0.002 0.000 0.005 0.003 0.002 CV 6.178 6.232 8.691 10.034 20.049 6.497 2.557 10.059 7.396 8.275 216 Radial Measures of Variance, Split Sexes, GM adjusted Homo sapiens, female only, radius rLEN1 rLEN2 rPAP rPML rNE1 rNE2 rNE3 rTUB rDML rDAP Count 9 9 9 9 9 9 9 9 9 9 Range 0.812 0.705 0.079 0.065 0.093 0.072 0.071 0.145 0.132 0.087 Minimum 5.998 6.266 0.584 0.561 0.336 0.602 0.860 0.575 0.787 0.551 Maximum 6.810 6.971 0.663 0.626 0.429 0.674 0.931 0.720 0.919 0.637 Mean 6.356 6.526 0.613 0.585 0.380 0.640 0.891 0.634 0.847 0.584 Standard Error 0.098 0.093 0.008 0.006 0.012 0.007 0.008 0.014 0.015 0.010 Standard Deviation 0.294 0.278 0.024 0.019 0.036 0.021 0.024 0.041 0.044 0.031 Sample Variance 0.086 0.077 0.001 0.000 0.001 0.000 0.001 0.002 0.002 0.001 CV 4.620 4.253 3.920 3.295 9.592 3.323 2.669 6.529 5.137 5.309 Homo sapiens, male only, radius rLEN1 rLEN2 rPAP rPML rNE1 rNE2 rNE3 rTUB rDML rDAP Count 9 9 9 9 9 9 9 9 9 9 Range 1.203 1.220 0.175 0.136 0.209 0.206 0.137 0.168 0.448 0.313 Minimum 5.960 6.132 0.556 0.546 0.209 0.485 0.824 0.527 0.601 0.594 Maximum 7.163 7.352 0.730 0.682 0.418 0.691 0.961 0.695 1.049 0.907 Mean 6.412 6.588 0.605 0.579 0.360 0.622 0.895 0.612 0.886 0.655 Standard Error 0.133 0.136 0.017 0.014 0.020 0.020 0.014 0.017 0.040 0.032 Standard Deviation 0.400 0.407 0.050 0.041 0.061 0.059 0.043 0.050 0.121 0.097 Sample Variance 0.160 0.166 0.003 0.002 0.004 0.003 0.002 0.003 0.015 0.009 CV 6.237 6.184 8.288 7.001 16.809 9.510 4.838 8.219 13.699 14.791 217 Radial Measures of Variance, Split Sexes, GM adjusted Pan troglodytes, female only, radius rLEN1 rLEN2 rPAP rPML rNE1 rNE2 rNE3 rTUB rDML rDAP Count 9 9 9 9 9 9 9 9 9 9 Range 0.646 0.578 0.061 0.062 0.183 0.133 0.108 0.378 0.079 0.091 Minimum 6.070 6.153 0.529 0.517 0.393 0.689 0.884 0.426 0.725 0.470 Maximum 6.717 6.731 0.590 0.580 0.576 0.822 0.992 0.804 0.804 0.561 Mean 6.334 6.397 0.564 0.550 0.509 0.757 0.953 0.553 0.760 0.532 Standard Error 0.080 0.078 0.008 0.008 0.017 0.012 0.013 0.041 0.009 0.010 Standard Deviation 0.239 0.233 0.023 0.025 0.052 0.037 0.038 0.122 0.028 0.029 Sample Variance 0.057 0.054 0.001 0.001 0.003 0.001 0.001 0.015 0.001 0.001 CV 3.774 3.637 4.062 4.469 10.175 4.887 3.959 22.077 3.672 5.357 P an troglodytes, male only, radius rLEN1 rLEN2 rPAP rPML rNE1 rNE2 rNE3 rTUB rDML rDAP Count 6 6 6 6 6 6 6 6 6 6 Range 0.451 0.454 0.105 0.065 0.178 0.116 0.127 0.178 0.125 0.120 Minimum 6.056 6.143 0.514 0.521 0.415 0.695 0.880 0.472 0.679 0.465 Maximum 6.506 6.597 0.619 0.586 0.593 0.811 1.007 0.650 0.804 0.584 Mean 6.276 6.343 0.575 0.564 0.504 0.744 0.944 0.564 0.750 0.530 Standard Error 0.074 0.080 0.017 0.011 0.024 0.019 0.021 0.027 0.019 0.021 Standard Deviation 0.181 0.195 0.041 0.028 0.059 0.047 0.052 0.066 0.047 0.050 Sample Variance 0.033 0.038 0.002 0.001 0.003 0.002 0.003 0.004 0.002 0.003 CV 2.887 3.071 7.117 4.941 11.676 6.262 5.521 11.697 6.280 9.488 218 Radial Measures of Variance, Split Sexes, GM adjusted Papio hamadryas, female only, radius rLEN1 rLEN2 rPAP rPML rNE1 rNE2 rNE3 rTUB rDML rDAP Count 2 5 10 10 5 2 5 2 8 8 Range 0.597 0.909 0.117 0.093 0.126 0.016 0.104 0.079 0.096 0.074 Minimum 7.339 7.243 0.520 0.501 0.201 0.559 0.656 0.779 0.709 0.550 Maximum 7.936 8.152 0.637 0.594 0.327 0.575 0.759 0.858 0.805 0.624 Mean 7.637 7.734 0.579 0.552 0.284 0.567 0.725 0.819 0.751 0.583 Standard Error 0.298 0.155 0.013 0.010 0.022 0.008 0.020 0.039 0.013 0.008 Standard Deviation 0.422 0.347 0.041 0.032 0.050 0.011 0.045 0.056 0.036 0.022 Sample Variance 0.178 0.120 0.002 0.001 0.002 0.000 0.002 0.003 0.001 0.000 CV 5.525 4.481 7.144 5.820 17.522 2.001 6.211 6.799 4.765 3.697 P apio hamadryas, male only, radius rLEN1 rLEN2 rPAP rPML rNE1 rNE2 rNE3 rTUB rDML rDAP Count 5 13 23 23 13 5 13 5 15 15 Range 0.341 0.999 0.113 0.116 0.160 0.104 0.270 0.288 0.194 0.098 Minimum 6.929 6.747 0.558 0.519 0.236 0.532 0.685 0.675 0.641 0.566 Maximum 7.270 7.746 0.672 0.634 0.396 0.637 0.954 0.963 0.835 0.664 Mean 7.030 7.206 0.607 0.573 0.310 0.592 0.805 0.772 0.764 0.610 Standard Error 0.063 0.079 0.007 0.007 0.015 0.020 0.022 0.057 0.014 0.007 Standard Deviation 0.141 0.284 0.033 0.033 0.054 0.044 0.080 0.127 0.054 0.028 Sample Variance 0.020 0.081 0.001 0.001 0.003 0.002 0.006 0.016 0.003 0.001 CV 2.010 3.942 5.438 5.778 17.436 7.389 9.953 16.449 7.009 4.518 219 Radial Measures of Variance, Split Sexes, GM adjusted Theropithecus gelada, female only, radius rLEN1 rLEN2 rPAP rPML rNE1 rNE2 rNE3 rTUB rDML rDAP Count 2 5 5 5 5 2 5 2 4 4 Range 0.189 0.570 0.102 0.073 0.109 0.065 0.092 0.128 0.158 0.024 Minimum 7.598 7.819 0.548 0.556 0.222 0.506 0.650 0.881 0.592 0.608 Maximum 7.788 8.389 0.649 0.630 0.332 0.571 0.742 1.009 0.749 0.632 Mean 7.693 8.085 0.604 0.591 0.266 0.538 0.692 0.945 0.691 0.619 Standard Error 0.095 0.103 0.018 0.012 0.025 0.032 0.015 0.064 0.034 0.006 Standard Deviation 0.134 0.230 0.040 0.028 0.056 0.046 0.035 0.091 0.069 0.011 Sample Variance 0.018 0.053 0.002 0.001 0.003 0.002 0.001 0.008 0.005 0.000 CV 1.738 2.850 6.625 4.697 21.164 8.481 4.997 9.615 9.920 1.832 T heropithecus gelada, male only, radius rLEN1 rLEN2 rPAP rPML rNE1 rNE2 rNE3 rTUB rDML rDAP Count 2 6 7 7 6 2 6 2 6 6 Range 0.156 0.448 0.074 0.107 0.094 0.065 0.062 0.157 0.102 0.073 Minimum 7.603 7.878 0.569 0.566 0.226 0.446 0.701 0.936 0.708 0.579 Maximum 7.759 8.327 0.643 0.672 0.319 0.512 0.762 1.093 0.810 0.652 Mean 7.681 8.044 0.613 0.609 0.267 0.479 0.732 1.014 0.744 0.619 Standard Error 0.078 0.071 0.009 0.014 0.016 0.033 0.010 0.078 0.017 0.010 Standard Deviation 0.110 0.174 0.025 0.037 0.039 0.046 0.025 0.111 0.042 0.024 Sample Variance 0.012 0.030 0.001 0.001 0.002 0.002 0.001 0.012 0.002 0.001 CV 1.435 2.168 4.023 6.113 14.714 9.631 3.401 10.926 5.708 3.907 220 Radial Measures of Variance, Split Sexes, GM adjusted Macaca fascicularis, female only, radius rLEN1 rLEN2 rPAP rPML rNE1 rNE2 rNE3 rTUB rDML rDAP Count 2 2 6 6 2 2 2 2 6 6 Range 0.775 0.728 0.121 0.067 0.072 0.110 0.014 0.170 0.148 0.124 Minimum 7.186 7.386 0.548 0.543 0.308 0.613 0.829 0.660 0.705 0.548 Maximum 7.961 8.114 0.669 0.610 0.380 0.722 0.843 0.829 0.853 0.673 Mean 7.574 7.750 0.611 0.575 0.344 0.667 0.836 0.745 0.774 0.592 Standard Error 0.388 0.364 0.020 0.012 0.036 0.055 0.007 0.085 0.023 0.024 Standard Deviation 0.548 0.515 0.050 0.028 0.051 0.078 0.010 0.120 0.055 0.058 Sample Variance 0.301 0.265 0.002 0.001 0.003 0.006 0.000 0.014 0.003 0.003 CV 7.240 6.640 8.145 4.903 14.887 11.619 1.164 16.143 7.156 9.821 Macaca fascicularis, male only, radius rLEN1 rLEN2 rPAP rPML rNE1 rNE2 rNE3 rTUB rDML rDAP Count 3 3 6 6 3 3 3 3 6 6 Range 0.817 0.706 0.138 0.034 0.141 0.135 0.187 0.069 0.099 0.100 Minimum 6.260 6.530 0.476 0.501 0.352 0.670 0.813 0.678 0.632 0.489 Maximum 7.077 7.237 0.614 0.535 0.493 0.805 1.000 0.747 0.731 0.589 Mean 6.562 6.776 0.568 0.521 0.432 0.727 0.903 0.705 0.694 0.547 Standard Error 0.259 0.230 0.020 0.006 0.042 0.040 0.054 0.021 0.017 0.017 Standard Deviation 0.448 0.399 0.048 0.014 0.073 0.070 0.094 0.037 0.042 0.042 Sample Variance 0.201 0.159 0.002 0.000 0.005 0.005 0.009 0.001 0.002 0.002 CV 6.834 5.887 8.429 2.727 16.843 9.608 10.380 5.233 6.071 7.623 221 Radial Measures of Variance, Split Sexes, GM adjusted Macaca nemestrina, female only, radius rLEN1 rLEN2 rPAP rPML rNE1 rNE2 rNE3 rTUB rDML rDAP Count 2 2 4 4 2 2 2 2 4 4 Range 0.888 0.910 0.038 0.144 0.142 0.041 0.045 0.020 0.100 0.015 Minimum 6.915 7.150 0.553 0.502 0.255 0.602 0.821 0.714 0.707 0.572 Maximum 7.803 8.061 0.590 0.647 0.398 0.643 0.866 0.734 0.807 0.587 Mean 7.359 7.605 0.570 0.570 0.327 0.623 0.844 0.724 0.770 0.580 Standard Error 0.444 0.455 0.008 0.031 0.071 0.020 0.023 0.010 0.023 0.003 Standard Deviation 0.628 0.644 0.017 0.061 0.101 0.029 0.032 0.014 0.046 0.007 Sample Variance 0.394 0.414 0.000 0.004 0.010 0.001 0.001 0.000 0.002 0.000 CV 8.530 8.462 2.949 10.739 30.843 4.631 3.797 1.965 6.029 1.204 M acaca nemestrina, male only, radius rLEN1 rLEN2 rPAP rPML rNE1 rNE2 rNE3 rTUB rDML rDAP Count 1 1 6 6 2 1 2 1 6 6 Range 0.000 0.000 0.178 0.176 0.042 0.000 0.002 0.000 0.183 0.165 Minimum 7.214 7.404 0.482 0.468 0.374 0.565 0.824 0.606 0.705 0.489 Maximum 7.214 7.404 0.660 0.644 0.416 0.565 0.826 0.606 0.888 0.654 Mean 7.214 7.404 0.607 0.578 0.395 0.565 0.825 0.606 0.808 0.605 Standard Error . . 0.026 0.025 0.021 . 0.001 . 0.026 0.026 Standard Deviation . . 0.063 0.061 0.030 . 0.002 . 0.065 0.063 Sample Variance . . 0.004 0.004 0.001 . 0.000 . 0.004 0.004 CV . . 10.375 10.544 7.539 . 0.189 . 7.995 10.494 222 Femoral Measures of Variance, Pooled Sexes, GM adjusted H omo sapiens, pooled sexes, femur fLEN1 fLEN2 fPML fMLLES fGT fAPLES fHEP fHEM fHEA fPSP fPSM fDML fDAP fCPD fCML fICGP fICGM S S D L P D L D L Count 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 Range 0.957 1.187 0.283 0.209 0.224 0.225 0.160 0.127 0.182 0.150 0.268 0.188 0.187 0.185 0.240 0.179 0.185 Minimum 7.716 8.027 1.598 0.570 0.078 0.551 0.789 0.698 0.777 0.593 0.731 1.414 1.116 0.667 1.281 0.416 0.294 Maximum 8.673 9.214 1.881 0.780 0.301 0.776 0.948 0.825 0.959 0.743 0.998 1.601 1.303 0.852 1.521 0.595 0.479 Mean 8.214 8.631 1.731 0.698 0.172 0.602 0.870 0.750 0.864 0.657 0.830 1.509 1.209 0.763 1.395 0.524 0.401 Standard Error 0.073 0.084 0.017 0.012 0.015 0.012 0.010 0.010 0.012 0.010 0.016 0.014 0.012 0.013 0.017 0.012 0.012 Standard Deviation 0.310 0.358 0.073 0.053 0.065 0.050 0.043 0.042 0.049 0.041 0.066 0.060 0.052 0.057 0.072 0.050 0.051 Sample Variance 0.096 0.128 0.005 0.003 0.004 0.003 0.002 0.002 0.002 0.002 0.004 0.004 0.003 0.003 0.005 0.003 0.003 CV 3.778 4.152 4.223 7.525 37.766 8.318 4.988 5.536 5.650 6.191 7.959 3.943 4.283 7.481 5.142 9.564 12.795 Pan troglodytes, pooled sexes, femur fLEN1 fLEN2 fPML fMLLES fGT fAPLES fHEP fHEM fHEA fPSP fPSM fDML fDAP fCPD fCML fICGP fICGM S S D L P D L D L Count 13 13 15 15 15 15 15 15 15 14 14 14 14 14 14 14 14 Range 1.036 1.196 0.190 0.230 0.146 0.266 0.096 0.234 0.097 0.136 0.148 0.233 0.414 0.151 0.721 0.242 0.142 Minimum 6.545 6.579 1.456 0.681 0.254 0.569 0.769 0.596 0.769 0.608 0.718 1.373 0.930 0.647 0.732 0.311 0.347 Maximum 7.581 7.775 1.646 0.911 0.400 0.834 0.865 0.830 0.866 0.744 0.866 1.605 1.344 0.798 1.453 0.553 0.490 Mean 7.148 7.237 1.571 0.809 0.334 0.720 0.803 0.714 0.806 0.675 0.796 1.480 1.011 0.731 1.324 0.456 0.425 Standard Error 0.076 0.091 0.017 0.019 0.012 0.019 0.007 0.015 0.006 0.012 0.013 0.017 0.027 0.013 0.047 0.015 0.010 Standard Deviation 0.276 0.328 0.064 0.074 0.048 0.074 0.026 0.059 0.025 0.045 0.049 0.062 0.102 0.050 0.176 0.054 0.036 Sample Variance 0.076 0.108 0.004 0.005 0.002 0.005 0.001 0.003 0.001 0.002 0.002 0.004 0.010 0.003 0.031 0.003 0.001 CV 3.857 4.533 4.076 9.113 14.282 10.248 3.212 8.225 3.102 6.620 6.204 4.199 10.10 6.843 13.305 3 11.957 8.482 223 Femoral Measures of Variance, Pooled Sexes, GM adjusted Papio hamadryas, pooled sexes, femur fLEN fLEN fPML fMLLES fGT fAPLES fHEP fHEM fHEA fPSP fPSM fDML fDAP fCPD fCML fICGP fICGM 1 2 S S D L P D L D L Count 19 19 19 7 17 7 19 19 19 19 7 19 19 19 7 7 7 Range 1.179 1.328 0.188 0.108 0.176 0.096 0.097 0.188 0.076 0.225 0.093 0.236 0.160 0.100 0.091 0.105 0.073 Minimum 7.752 7.418 1.512 0.683 0.408 0.597 0.719 0.591 0.739 0.544 0.687 1.145 0.967 0.657 1.153 0.401 0.328 Maximum 8.931 8.746 1.700 0.790 0.584 0.693 0.816 0.779 0.815 0.769 0.780 1.381 1.127 0.757 1.244 0.506 0.401 Mean 8.274 8.012 1.599 0.741 0.486 0.649 0.759 0.698 0.770 0.657 0.729 1.274 1.050 0.716 1.213 0.450 0.370 Standard Error 0.075 0.075 0.014 0.014 0.013 0.014 0.006 0.013 0.005 0.015 0.013 0.014 0.009 0.006 0.011 0.015 0.009 Standard Deviation 0.328 0.325 0.063 0.038 0.055 0.036 0.027 0.058 0.022 0.067 0.034 0.060 0.040 0.026 0.030 0.041 0.023 Sample Variance 0.108 0.106 0.004 0.001 0.003 0.001 0.001 0.003 0.001 0.004 0.001 0.004 0.002 0.001 0.001 0.002 0.001 CV 3.967 4.062 3.939 5.105 11.269 5.596 3.605 8.337 2.915 10.147 4.687 4.695 3.805 3.645 2.468 9.036 6.328 Theropithecus gelada, pooled sexes, femur fLEN fLEN fPML fMLLES fGT fAPLES fHEP fHEM fHEA fPSP fPSM fDML fDAP fCPD fCML fICGP fICGM 1 2 S S D L P D L D L Count 10 10 10 4 9 4 10 10 10 9 4 9 9 9 4 4 4 Range 0.524 0.515 0.209 0.074 0.150 0.229 0.079 0.152 0.081 0.176 0.098 0.086 0.086 0.131 0.058 0.037 0.050 Minimum 7.394 7.270 1.454 0.600 0.391 0.653 0.724 0.615 0.730 0.604 0.750 1.256 1.009 0.629 1.198 0.446 0.396 Maximum 7.917 7.785 1.663 0.674 0.540 0.882 0.804 0.767 0.811 0.780 0.848 1.342 1.095 0.760 1.256 0.484 0.446 Mean 7.666 7.446 1.525 0.640 0.461 0.796 0.757 0.690 0.765 0.662 0.786 1.307 1.041 0.696 1.237 0.463 0.423 Standard Error 0.052 0.060 0.017 0.017 0.016 0.055 0.008 0.019 0.008 0.018 0.022 0.009 0.010 0.013 0.013 0.009 0.010 Standard Deviation 0.165 0.191 0.055 0.035 0.047 0.110 0.024 0.060 0.026 0.055 0.044 0.028 0.029 0.038 0.026 0.018 0.021 Sample Variance 0.027 0.037 0.003 0.001 0.002 0.012 0.001 0.004 0.001 0.003 0.002 0.001 0.001 0.001 0.001 0.000 0.000 CV 2.148 2.568 3.605 5.407 10.165 13.766 3.224 8.704 3.409 8.376 5.627 2.119 2.755 5.422 2.114 3.980 4.907 224 Femoral Measures of Variance, Pooled Sexes, GM adjusted Macaca fascicularis, pooled sexes, femur fLEN1 fLEN2 fPML fMLLES fGT fAPLES fHEP fHEM fHEAP fPSPD fPSML fDML fDAP fCPD fCML fICGP fICGM S S D L D L Count 10 10 11 5 11 5 11 11 11 10 5 10 10 10 5 5 5 Range 1.347 1.355 0.197 0.404 0.088 0.098 0.073 0.254 0.074 0.276 0.086 0.137 0.149 0.130 0.114 0.104 0.099 Minimum 8.144 7.965 1.432 0.587 0.382 0.624 0.723 0.626 0.739 0.582 0.585 1.199 0.975 0.692 1.197 0.435 0.342 Maximum 9.491 9.320 1.629 0.991 0.470 0.723 0.796 0.879 0.813 0.858 0.670 1.336 1.124 0.821 1.312 0.539 0.440 Mean 8.750 8.581 1.542 0.839 0.418 0.663 0.753 0.743 0.772 0.725 0.619 1.290 1.044 0.741 1.241 0.461 0.374 Standard Error 0.125 0.125 0.019 0.070 0.009 0.017 0.009 0.030 0.008 0.028 0.020 0.014 0.014 0.012 0.019 0.020 0.017 Standard Deviation 0.396 0.395 0.062 0.157 0.028 0.037 0.028 0.099 0.026 0.090 0.044 0.046 0.045 0.037 0.043 0.044 0.038 Sample Variance 0.157 0.156 0.004 0.025 0.001 0.001 0.001 0.010 0.001 0.008 0.002 0.002 0.002 0.001 0.002 0.002 0.001 CV 4.525 4.599 4.052 18.674 6.783 5.589 3.750 13.279 3.309 12.354 7.144 3.554 4.343 4.973 3.498 9.553 10.151 Macaca nemestrina, pooled sexes, femur fLEN1 fLEN2 fPML fMLLES fGT fAPLES fHEP fHEM fHEAP fPSPD fPSML fDML fDAP fCPD fCML fICGP fICGM S S D L D L Count 4 4 4 3 4 3 4 4 4 4 3 4 4 4 3 3 3 Range 1.259 1.298 0.146 0.136 0.124 0.146 0.117 0.098 0.097 0.082 0.185 0.105 0.067 0.136 0.035 0.153 0.035 Minimum 7.895 7.767 1.438 0.802 0.301 0.591 0.690 0.571 0.722 0.668 0.621 1.208 1.013 0.631 1.215 0.393 0.390 Maximum 9.154 9.065 1.583 0.937 0.425 0.738 0.807 0.669 0.819 0.750 0.805 1.313 1.080 0.767 1.251 0.546 0.426 Mean 8.682 8.593 1.490 0.880 0.360 0.658 0.743 0.639 0.751 0.718 0.700 1.257 1.054 0.702 1.229 0.491 0.413 Standard Error 0.287 0.298 0.032 0.041 0.026 0.043 0.025 0.023 0.023 0.019 0.055 0.025 0.014 0.031 0.011 0.049 0.011 Standard Deviation 0.574 0.596 0.065 0.070 0.052 0.074 0.050 0.045 0.046 0.038 0.095 0.049 0.029 0.062 0.019 0.085 0.019 Sample Variance 0.329 0.355 0.004 0.005 0.003 0.005 0.002 0.002 0.002 0.001 0.009 0.002 0.001 0.004 0.000 0.007 0.000 CV 6.610 6.933 4.332 7.981 14.403 11.232 6.689 7.122 6.126 5.284 13.574 3.900 2.734 8.795 1.535 17.332 4.681 225 Femoral Measures of Variance, Split Sexes, GM adjusted Homo sapiens, female only, femur fLEN1 fLEN2 fPML fMLLES fGT fAPLES fHEP fHEM fHEAP fPSPD fPSML fDML fDAP fCPD fCML fICGP fICGM S S D L D L Count 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 Range 0.957 1.064 0.220 0.207 0.189 0.075 0.095 0.094 0.083 0.114 0.113 0.139 0.187 0.144 0.163 0.165 0.185 Minimum 7.716 8.116 1.598 0.570 0.112 0.551 0.791 0.698 0.794 0.597 0.731 1.414 1.116 0.708 1.281 0.416 0.294 Maximum 8.673 9.180 1.818 0.778 0.301 0.626 0.886 0.792 0.878 0.711 0.844 1.553 1.303 0.852 1.444 0.581 0.479 Mean 8.177 8.611 1.710 0.687 0.205 0.582 0.848 0.728 0.841 0.665 0.807 1.480 1.206 0.786 1.353 0.516 0.398 Standard Error 0.119 0.119 0.025 0.021 0.019 0.009 0.011 0.011 0.010 0.012 0.011 0.017 0.017 0.017 0.020 0.018 0.021 Standard Deviation 0.357 0.358 0.075 0.062 0.056 0.026 0.032 0.033 0.030 0.036 0.033 0.050 0.052 0.052 0.059 0.055 0.062 Sample Variance 0.127 0.128 0.006 0.004 0.003 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.003 0.003 0.004 0.003 0.004 CV 4.363 4.153 4.413 8.983 27.611 4.505 3.777 4.581 3.598 5.458 4.079 3.370 4.318 6.611 4.399 10.745 15.573 Homo sapiens, male only, femur fLEN1 fLEN2 fPML fMLLES fGT fAPLES fHEP fHEM fHEAP fPSPD fPSML fDML fDAP fCPD fCML fICGP fICGM S S D L D L Count 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 Range 0.747 1.187 0.210 0.137 0.187 0.193 0.160 0.118 0.182 0.150 0.246 0.181 0.161 0.174 0.154 0.158 0.148 Minimum 7.824 8.027 1.671 0.643 0.078 0.583 0.789 0.708 0.777 0.593 0.753 1.420 1.134 0.667 1.366 0.437 0.326 Maximum 8.571 9.214 1.881 0.780 0.264 0.776 0.948 0.825 0.959 0.743 0.998 1.601 1.294 0.841 1.521 0.595 0.475 Mean 8.251 8.650 1.751 0.709 0.139 0.623 0.891 0.771 0.887 0.649 0.852 1.538 1.212 0.741 1.438 0.533 0.403 Standard Error 0.091 0.127 0.023 0.014 0.019 0.020 0.015 0.013 0.018 0.015 0.028 0.019 0.018 0.018 0.019 0.015 0.014 Standard Deviation 0.273 0.380 0.069 0.042 0.058 0.061 0.044 0.039 0.054 0.045 0.084 0.056 0.054 0.055 0.057 0.046 0.042 Sample Variance 0.074 0.144 0.005 0.002 0.003 0.004 0.002 0.001 0.003 0.002 0.007 0.003 0.003 0.003 0.003 0.002 0.002 CV 3.306 4.389 3.920 5.953 41.662 9.792 4.947 4.996 6.095 6.987 9.851 3.659 4.491 7.462 3.986 8.646 10.305 226 Femoral Measures of Variance, Split Sexes, GM adjusted Pan troglodytes, female only, femur fLEN1 fLEN2 fPML fMLLES fGT fAPLES fHEP fHEM fHEAP fPSPD fPSML fDML fDAP fCPD fCML fICGP fICGM S S D L D L Count 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 Range 0.680 0.832 0.190 0.230 0.143 0.266 0.064 0.149 0.069 0.119 0.130 0.233 0.414 0.140 0.721 0.137 0.097 Minimum 6.901 6.942 1.456 0.681 0.254 0.569 0.770 0.603 0.769 0.608 0.736 1.373 0.930 0.656 0.732 0.416 0.378 Maximum 7.581 7.775 1.646 0.911 0.397 0.834 0.834 0.752 0.839 0.727 0.866 1.605 1.344 0.796 1.453 0.553 0.474 Mean 7.235 7.347 1.550 0.783 0.327 0.729 0.798 0.709 0.805 0.665 0.806 1.490 1.015 0.729 1.316 0.473 0.428 Standard Error 0.090 0.110 0.024 0.024 0.016 0.031 0.007 0.016 0.007 0.014 0.015 0.023 0.042 0.016 0.074 0.014 0.009 Standard Deviation 0.256 0.312 0.072 0.073 0.048 0.094 0.020 0.049 0.020 0.043 0.046 0.068 0.127 0.047 0.223 0.042 0.026 Sample Variance 0.065 0.098 0.005 0.005 0.002 0.009 0.000 0.002 0.000 0.002 0.002 0.005 0.016 0.002 0.050 0.002 0.001 CV 3.536 4.252 4.615 9.357 14.763 12.845 2.486 6.934 2.423 6.490 5.673 4.578 12.528 6.503 16.929 8.882 6.180 Pan troglodytes, male only, femur fLEN1 fLEN2 fPML fMLLES fGT fAPLES fHEP fHEM fHEAP fPSPD fPSML fDML fDAP fCPD fCML fICGP fICGM S S D L D L Count 5 5 6 6 6 6 6 6 6 5 5 5 5 5 5 5 5 Range 0.710 0.789 0.102 0.172 0.145 0.075 0.096 0.234 0.093 0.105 0.122 0.124 0.109 0.151 0.073 0.164 0.142 Minimum 6.545 6.579 1.541 0.737 0.255 0.676 0.769 0.596 0.774 0.639 0.718 1.388 0.954 0.647 1.295 0.311 0.347 Maximum 7.255 7.368 1.643 0.908 0.400 0.751 0.865 0.830 0.866 0.744 0.840 1.512 1.062 0.798 1.367 0.475 0.490 Mean 7.008 7.060 1.602 0.848 0.344 0.705 0.810 0.722 0.809 0.693 0.778 1.460 1.004 0.734 1.338 0.424 0.419 Standard Error 0.122 0.133 0.015 0.024 0.020 0.011 0.014 0.031 0.014 0.021 0.025 0.022 0.017 0.027 0.015 0.029 0.023 Standard Deviation 0.272 0.298 0.036 0.060 0.049 0.027 0.034 0.075 0.034 0.046 0.056 0.050 0.039 0.060 0.034 0.064 0.052 Sample Variance 0.074 0.089 0.001 0.004 0.002 0.001 0.001 0.006 0.001 0.002 0.003 0.003 0.002 0.004 0.001 0.004 0.003 CV 3.883 4.215 2.257 7.051 14.318 3.824 4.147 10.432 4.161 6.697 7.153 3.433 3.867 8.197 2.549 15.157 12.522 227 Femoral Measures of Variance, Split Sexes, GM adjusted Papio hamadryas, female only, femur fLEN1 fLEN2 fPML fMLLES fGT fAPLES fHEP fHEM fHEAP fPSPD fPSML fDML fDAP fCPD fCML fICGP fICGM S S D L D L Count 6 6 6 2 4 2 6 6 6 6 2 6 6 6 2 2 2 Range 0.882 0.895 0.164 0.005 0.062 0.026 0.080 0.114 0.071 0.144 0.011 0.090 0.057 0.062 0.085 0.105 0.025 Minimum 7.964 7.696 1.512 0.735 0.408 0.664 0.734 0.647 0.743 0.594 0.702 1.205 0.994 0.657 1.153 0.401 0.376 Maximum 8.846 8.592 1.676 0.741 0.471 0.690 0.813 0.761 0.814 0.738 0.714 1.294 1.051 0.719 1.238 0.506 0.401 Mean 8.262 8.039 1.574 0.738 0.434 0.677 0.762 0.707 0.772 0.650 0.708 1.245 1.022 0.690 1.196 0.453 0.388 Standard Error 0.125 0.124 0.028 0.003 0.013 0.013 0.012 0.016 0.011 0.026 0.006 0.016 0.011 0.010 0.043 0.052 0.013 Standard Deviation 0.306 0.303 0.068 0.004 0.026 0.018 0.029 0.039 0.027 0.064 0.008 0.039 0.026 0.024 0.060 0.074 0.018 Sample Variance 0.094 0.092 0.005 0.000 0.001 0.000 0.001 0.002 0.001 0.004 0.000 0.002 0.001 0.001 0.004 0.005 0.000 CV 3.708 3.770 4.334 0.506 6.072 2.693 3.746 5.501 3.465 9.814 1.113 3.153 2.521 3.422 5.040 16.345 4.631 Papio hamadryas, male only, femur fLEN1 fLEN2 fPML fMLLES fGT fAPLES fHEP fHEM fHEAP fPSPD fPSML fDML fDAP fCPD fCML fICGP fICGM S S D L D L Count 13 13 13 5 13 5 13 13 13 13 5 13 13 13 5 5 5 Range 1.179 1.328 0.188 0.108 0.164 0.096 0.097 0.188 0.076 0.225 0.093 0.236 0.160 0.058 0.039 0.088 0.062 Minimum 7.752 7.418 1.512 0.683 0.420 0.597 0.719 0.591 0.739 0.544 0.687 1.145 0.967 0.699 1.205 0.403 0.328 Maximum 8.931 8.746 1.700 0.790 0.584 0.693 0.816 0.779 0.815 0.769 0.780 1.381 1.127 0.757 1.244 0.491 0.391 Mean 8.279 8.000 1.611 0.742 0.502 0.638 0.757 0.693 0.769 0.660 0.737 1.287 1.063 0.728 1.220 0.448 0.363 Standard Error 0.097 0.096 0.017 0.021 0.014 0.017 0.008 0.018 0.006 0.019 0.017 0.018 0.011 0.005 0.007 0.015 0.010 Standard Deviation 0.350 0.347 0.060 0.046 0.052 0.037 0.028 0.066 0.021 0.070 0.038 0.064 0.039 0.017 0.015 0.033 0.022 Sample Variance 0.122 0.120 0.004 0.002 0.003 0.001 0.001 0.004 0.000 0.005 0.001 0.004 0.002 0.000 0.000 0.001 0.001 CV 4.225 4.331 3.696 6.231 10.287 5.792 3.672 9.543 2.774 10.642 5.123 4.984 3.709 2.376 1.224 7.373 6.197 228 Femoral Measures of Variance, Split Sexes, GM adjusted Theropithecus gelada, female only, femur fLEN1 fLEN2 fPML fMLLES fGT fAPLES fHEP fHEM fHEAP fPSPD fPSML fDML fDAP fCPD fCML fICGP fICGM S S D L D L Count 5 5 5 2 4 2 5 5 5 4 2 4 4 4 2 2 2 Range 0.524 0.515 0.158 0.040 0.056 0.116 0.079 0.136 0.059 0.077 0.026 0.081 0.016 0.099 0.048 0.026 0.023 Minimum 7.394 7.270 1.505 0.623 0.391 0.767 0.724 0.631 0.752 0.630 0.760 1.256 1.009 0.661 1.198 0.446 0.423 Maximum 7.917 7.785 1.663 0.663 0.447 0.882 0.804 0.767 0.811 0.707 0.785 1.337 1.024 0.760 1.246 0.472 0.446 Mean 7.667 7.510 1.551 0.643 0.421 0.824 0.763 0.694 0.777 0.655 0.773 1.305 1.016 0.705 1.222 0.459 0.434 Standard Error 0.093 0.096 0.029 0.020 0.012 0.058 0.014 0.028 0.012 0.018 0.013 0.018 0.004 0.021 0.024 0.013 0.012 Standard Deviation 0.208 0.214 0.066 0.028 0.024 0.082 0.031 0.062 0.028 0.036 0.018 0.035 0.007 0.042 0.034 0.019 0.016 Sample Variance 0.043 0.046 0.004 0.001 0.001 0.007 0.001 0.004 0.001 0.001 0.000 0.001 0.000 0.002 0.001 0.000 0.000 CV 2.707 2.851 4.245 4.398 5.780 9.911 4.008 8.884 3.587 5.424 2.334 2.692 0.697 6.013 2.769 4.039 3.759 Theropithecus gelada, male only, femur fLEN1 fLEN2 fPML fMLLES fGT fAPLES fHEP fHEM fHEAP fPSPD fPSML fDML fDAP fCPD fCML fICGP fICGM S S D L D L Count 5 5 5 2 5 2 5 5 5 5 2 5 5 5 2 2 2 Range 0.328 0.394 0.073 0.074 0.087 0.228 0.042 0.150 0.050 0.176 0.098 0.058 0.058 0.089 0.009 0.036 0.032 Minimum 7.562 7.276 1.454 0.600 0.453 0.653 0.728 0.615 0.730 0.604 0.750 1.285 1.037 0.629 1.248 0.448 0.396 Maximum 7.890 7.670 1.527 0.674 0.540 0.881 0.770 0.765 0.780 0.780 0.848 1.342 1.095 0.719 1.256 0.484 0.427 Mean 7.665 7.382 1.499 0.637 0.492 0.767 0.752 0.687 0.754 0.668 0.799 1.309 1.060 0.688 1.252 0.466 0.411 Standard Error 0.060 0.073 0.012 0.037 0.015 0.114 0.008 0.029 0.009 0.032 0.049 0.011 0.010 0.016 0.004 0.018 0.016 Standard Deviation 0.134 0.162 0.028 0.053 0.034 0.161 0.018 0.065 0.020 0.071 0.070 0.024 0.023 0.037 0.006 0.025 0.022 Sample Variance 0.018 0.026 0.001 0.003 0.001 0.026 0.000 0.004 0.000 0.005 0.005 0.001 0.001 0.001 0.000 0.001 0.001 CV 1.748 2.197 1.849 8.250 6.971 21.026 2.423 9.533 2.717 10.698 8.714 1.869 2.184 5.323 0.488 5.397 5.448 229 Femoral Measures of Variance, Split Sexes, GM adjusted Macaca fascicularis, female only, femur fLEN1 fLEN2 fPML fMLLES fGT fAPLES fHEP fHEM fHEAP fPSPD fPSML fDML fDAP fCPD fCML fICGP fICGM S S D L D L Count 6 6 6 2 6 2 6 6 6 6 2 6 6 6 2 2 2 Range 1.029 0.880 0.152 0.319 0.088 0.024 0.060 0.254 0.046 0.172 0.078 0.075 0.117 0.078 0.047 0.094 0.074 Minimum 8.462 8.439 1.477 0.587 0.382 0.644 0.736 0.626 0.757 0.627 0.586 1.254 0.975 0.743 1.197 0.445 0.366 Maximum 9.491 9.320 1.629 0.907 0.470 0.669 0.796 0.879 0.803 0.799 0.664 1.329 1.092 0.821 1.244 0.539 0.440 Mean 8.950 8.812 1.536 0.747 0.413 0.656 0.770 0.776 0.781 0.702 0.625 1.306 1.035 0.762 1.221 0.492 0.403 Standard Error 0.144 0.126 0.026 0.160 0.015 0.012 0.010 0.045 0.008 0.025 0.039 0.011 0.016 0.012 0.023 0.047 0.037 Standard Deviation 0.353 0.308 0.063 0.226 0.037 0.017 0.023 0.111 0.019 0.062 0.055 0.027 0.039 0.030 0.033 0.066 0.052 Sample Variance 0.124 0.095 0.004 0.051 0.001 0.000 0.001 0.012 0.000 0.004 0.003 0.001 0.002 0.001 0.001 0.004 0.003 CV 3.940 3.499 4.123 30.232 8.877 2.636 3.026 14.281 2.377 8.831 8.774 2.038 3.769 3.950 2.699 13.498 13.009 Macaca fascicularis, male only, femur fLEN1 fLEN2 fPML fMLLES fGT fAPLES fHEP fHEM fHEAP fPSPD fPSML fDML fDAP fCPD fCML fICGP fICGM S S D L D L Count 4 4 5 3 5 3 5 5 5 4 3 4 4 4 3 3 3 Range 0.608 0.497 0.171 0.193 0.037 0.098 0.042 0.178 0.074 0.276 0.086 0.137 0.134 0.045 0.096 0.010 0.023 Minimum 8.144 7.965 1.432 0.798 0.402 0.624 0.723 0.629 0.739 0.582 0.585 1.199 0.990 0.692 1.216 0.435 0.342 Maximum 8.752 8.462 1.603 0.991 0.438 0.723 0.766 0.808 0.813 0.858 0.670 1.336 1.124 0.737 1.312 0.445 0.364 Mean 8.449 8.234 1.549 0.901 0.423 0.668 0.733 0.703 0.763 0.758 0.615 1.266 1.058 0.710 1.255 0.440 0.355 Standard Error 0.124 0.102 0.030 0.056 0.007 0.029 0.008 0.033 0.014 0.062 0.028 0.031 0.028 0.010 0.029 0.003 0.007 Standard Deviation 0.248 0.204 0.068 0.097 0.016 0.050 0.018 0.074 0.031 0.123 0.048 0.062 0.057 0.019 0.050 0.005 0.012 Sample Variance 0.062 0.042 0.005 0.009 0.000 0.003 0.000 0.005 0.001 0.015 0.002 0.004 0.003 0.000 0.003 0.000 0.000 CV 2.940 2.481 4.394 10.785 3.800 7.510 2.524 10.473 4.123 16.249 7.866 4.893 5.360 2.747 4.011 1.110 3.392 230 Femoral Measures of Variance, Split Sexes, GM adjusted Macaca nemestrina, female only, femur fLEN1 fLEN2 fPML fMLLES fGT fAPLES fHEP fHEM fHEAP fPSPD fPSML fDML fDAP fCPD fCML fICGP fICGM S S D L D L Count 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Range 0.440 0.514 0.100 0.136 0.042 0.146 0.054 0.011 0.094 0.077 0.053 0.031 0.014 0.028 0.035 0.141 0.004 Minimum 8.619 8.551 1.483 0.802 0.301 0.591 0.752 0.658 0.724 0.668 0.621 1.282 1.066 0.739 1.215 0.393 0.422 Maximum 9.060 9.065 1.583 0.937 0.343 0.738 0.807 0.669 0.819 0.745 0.674 1.313 1.080 0.767 1.251 0.534 0.426 Mean 8.839 8.808 1.533 0.870 0.322 0.664 0.780 0.664 0.772 0.707 0.647 1.297 1.073 0.753 1.233 0.464 0.424 Standard Error 0.220 0.257 0.050 0.068 0.021 0.073 0.027 0.005 0.047 0.038 0.027 0.015 0.007 0.014 0.018 0.071 0.002 Standard Deviation 0.311 0.363 0.071 0.096 0.030 0.103 0.038 0.008 0.067 0.054 0.038 0.022 0.010 0.020 0.025 0.100 0.003 Sample Variance 0.097 0.132 0.005 0.009 0.001 0.011 0.001 0.000 0.004 0.003 0.001 0.000 0.000 0.000 0.001 0.010 0.000 CV 3.524 4.125 4.607 11.040 9.258 15.562 4.919 1.148 8.644 7.662 5.801 1.668 0.946 2.638 2.030 21.537 0.691 Macaca nemestrina, male only, femur fLEN1 fLEN2 fPML fMLLES fGT fAPLES fHEP fHEM fHEAP fPSPD fPSML fDML fDAP fCPD fCML fICGP fICGM S S D L D L Count 2 2 2 1 2 1 2 2 2 2 1 2 2 2 1 1 1 Range 1.259 1.223 0.020 0.000 0.055 0.000 0.033 0.086 0.016 0.042 0.000 0.017 0.046 0.041 0.000 0.000 0.000 Minimum 7.895 7.767 1.438 0.901 0.370 0.646 0.690 0.571 0.722 0.708 0.805 1.208 1.013 0.631 1.222 0.546 0.390 Maximum 9.154 8.990 1.458 0.901 0.425 0.646 0.723 0.657 0.738 0.750 0.805 1.225 1.059 0.672 1.222 0.546 0.390 Mean 8.525 8.378 1.448 0.901 0.397 0.646 0.706 0.614 0.730 0.729 0.805 1.216 1.036 0.652 1.222 0.546 0.390 Standard Error 0.629 0.612 0.010 . 0.028 . 0.017 0.043 0.008 0.021 . 0.009 0.023 0.020 . . . Standard Deviation 0.890 0.865 0.014 . 0.039 . 0.023 0.061 0.011 0.030 . 0.012 0.032 0.029 . . . Sample Variance 0.792 0.748 0.000 . 0.002 . 0.001 0.004 0.000 0.001 . 0.000 0.001 0.001 . . . CV 10.441 10.323 0.990 . 9.813 . 3.310 9.883 1.541 4.104 . 1.010 3.109 4.419 . . . 231 Tibial Measures of Variance, Pooled Sexes, GM adjusted Homo sapiens, pooled sexes, tibia tLEN1 tLEN2 tPML tPAP tLFAP tMFAP tLFML tMFML tDAP tDML tMMPD tDASM L Count 17 17 17 17 17 17 17 17 17 17 17 17 Range 1.007 1.319 0.100 0.135 0.137 0.118 0.130 0.107 0.138 0.149 0.160 0.166 Minimum 6.580 6.122 1.357 0.901 0.654 0.787 0.470 0.490 0.675 0.803 0.188 0.444 Maximum 7.587 7.441 1.457 1.035 0.792 0.905 0.601 0.597 0.813 0.952 0.348 0.610 Mean 7.089 6.925 1.407 0.967 0.725 0.846 0.539 0.540 0.733 0.873 0.261 0.515 Standard Error 0.075 0.084 0.007 0.009 0.010 0.009 0.009 0.007 0.009 0.010 0.009 0.011 Standard Deviation 0.307 0.346 0.029 0.036 0.040 0.039 0.035 0.028 0.038 0.040 0.038 0.045 Sample Variance 0.094 0.120 0.001 0.001 0.002 0.002 0.001 0.001 0.001 0.002 0.001 0.002 CV 4.333 4.999 2.044 3.710 5.464 4.628 6.528 5.164 5.210 4.638 14.630 8.721 P an troglodytes, pooled sexes, tibia tLEN1 tLEN2 tPML tPAP tLFAP tMFAP tLFML tMFML tDAP tDML tMMPD tDASM L Count 15 14 15 15 15 15 15 15 15 15 15 15 Range 1.042 1.030 0.106 0.074 0.206 0.192 0.118 0.077 0.227 0.122 0.091 0.196 Minimum 5.531 5.298 1.341 0.877 0.626 0.662 0.540 0.557 0.597 0.809 0.294 0.501 Maximum 6.573 6.328 1.448 0.951 0.832 0.853 0.658 0.634 0.824 0.932 0.385 0.696 Mean 6.069 5.842 1.401 0.919 0.729 0.788 0.594 0.594 0.641 0.871 0.334 0.593 Standard Error 0.094 0.099 0.009 0.005 0.014 0.015 0.008 0.007 0.015 0.010 0.006 0.014 Standard Deviation 0.364 0.370 0.035 0.020 0.054 0.058 0.033 0.025 0.057 0.039 0.024 0.055 Sample Variance 0.133 0.137 0.001 0.000 0.003 0.003 0.001 0.001 0.003 0.002 0.001 0.003 CV 6.001 6.331 2.499 2.135 7.448 7.400 5.481 4.281 8.877 4.488 7.205 9.358 232 Tibial Measures of Variance, Pooled Sexes, GM adjusted P apio hamadryas, pooled sexes, tibia tLEN1 tLEN2 tPML tPAP tLFAP tMFAP tLFML tMFML tDAP tDML tMMPD tDASM L Count 20 20 35 35 35 35 23 23 20 35 23 23 Range 1.371 1.349 0.170 0.219 0.198 0.189 0.115 0.090 0.082 0.148 0.149 0.124 Minimum 6.657 6.320 1.212 0.873 0.664 0.723 0.521 0.498 0.641 0.734 0.222 0.452 Maximum 8.028 7.668 1.382 1.092 0.862 0.912 0.636 0.589 0.723 0.882 0.371 0.576 Mean 7.076 6.780 1.295 0.985 0.749 0.823 0.577 0.543 0.681 0.820 0.280 0.531 Standard Error 0.082 0.083 0.006 0.010 0.007 0.007 0.006 0.004 0.005 0.006 0.009 0.008 Standard Deviation 0.365 0.373 0.037 0.058 0.040 0.040 0.028 0.020 0.023 0.035 0.045 0.040 Sample Variance 0.133 0.139 0.001 0.003 0.002 0.002 0.001 0.000 0.001 0.001 0.002 0.002 CV 5.159 5.495 2.842 5.842 5.311 4.827 4.774 3.644 3.449 4.277 16.100 7.602 Theropithecus gelada, pooled sexes, tibia tLEN1 tLEN2 tPML tPAP tLFAP tMFAP tLFML tMFML tDAP tDML tMMPD tDASM L Count 11 11 12 12 12 12 10 10 11 12 10 10 Range 0.763 0.758 0.114 0.175 0.123 0.162 0.141 0.070 0.042 0.119 0.148 0.104 Minimum 7.028 6.704 1.284 0.887 0.667 0.732 0.463 0.496 0.657 0.756 0.231 0.493 Maximum 7.791 7.462 1.398 1.062 0.789 0.895 0.605 0.566 0.699 0.875 0.379 0.598 Mean 7.367 7.000 1.326 0.984 0.735 0.805 0.547 0.543 0.669 0.831 0.286 0.554 Standard Error 0.060 0.065 0.009 0.018 0.010 0.016 0.015 0.007 0.004 0.010 0.018 0.012 Standard Deviation 0.200 0.214 0.030 0.062 0.035 0.054 0.048 0.023 0.014 0.035 0.058 0.039 Sample Variance 0.040 0.046 0.001 0.004 0.001 0.003 0.002 0.001 0.000 0.001 0.003 0.002 CV 2.713 3.059 2.226 6.265 4.732 6.678 8.684 4.147 2.140 4.263 20.358 7.064 233 Tibial Measures of Variance, Pooled Sexes, GM adjusted M acaca fascicularis, pooled sexes, tibia tLEN1 tLEN2 tPML tPAP tLFAP tMFAP tLFML tMFML tDAP tDML tMMPD tDASM L Count 5 5 12 12 12 12 12 12 5 12 12 12 Range 1.176 1.141 0.125 0.128 0.157 0.241 0.158 0.082 0.014 0.152 0.135 0.189 Minimum 7.193 6.958 1.211 0.883 0.711 0.712 0.463 0.495 0.642 0.736 0.212 0.451 Maximum 8.370 8.099 1.336 1.011 0.867 0.953 0.620 0.577 0.656 0.887 0.347 0.640 Mean 7.799 7.522 1.277 0.941 0.796 0.804 0.576 0.529 0.648 0.811 0.273 0.545 Standard Error 0.224 0.219 0.013 0.013 0.013 0.020 0.012 0.009 0.003 0.014 0.013 0.013 Standard Deviation 0.501 0.490 0.045 0.046 0.044 0.069 0.043 0.031 0.006 0.049 0.046 0.046 Sample Variance 0.251 0.240 0.002 0.002 0.002 0.005 0.002 0.001 0.000 0.002 0.002 0.002 CV 6.422 6.508 3.547 4.918 5.528 8.564 7.474 5.916 0.874 6.010 16.923 8.446 Macaca nemestrina, pooled sexes, tibia tLEN1 tLEN2 tPML tPAP tLFAP tMFAP tLFML tMFML tDAP tDML tMMPD tDASM L Count 4 4 9 9 9 9 8 8 4 9 8 8 Range 1.187 1.202 0.194 0.294 0.134 0.066 0.265 0.107 0.035 0.107 0.104 0.167 Minimum 7.123 6.748 1.222 0.863 0.674 0.740 0.429 0.479 0.635 0.761 0.230 0.427 Maximum 8.310 7.951 1.416 1.157 0.808 0.807 0.694 0.586 0.670 0.868 0.334 0.594 Mean 7.808 7.467 1.311 0.940 0.749 0.778 0.578 0.539 0.659 0.807 0.271 0.506 Standard Error 0.292 0.293 0.022 0.031 0.013 0.009 0.027 0.012 0.008 0.012 0.016 0.019 Standard Deviation 0.583 0.587 0.065 0.092 0.039 0.026 0.076 0.035 0.016 0.037 0.046 0.054 Sample Variance 0.340 0.344 0.004 0.009 0.002 0.001 0.006 0.001 0.000 0.001 0.002 0.003 CV 7.471 7.859 4.965 9.832 5.209 3.280 13.111 6.520 2.423 4.645 16.859 10.627 234 Tibial Measures of Variance, Split Sexes, GM adjusted Homo sapiens, female only, tibia tLEN1 tLEN2 tPML tPAP tLFAP tMFAP tLFML tMFML tDAP tDML tMMPD tDASM L Count 9 9 9 9 9 9 9 9 9 9 9 9 Range 1.007 1.002 0.078 0.121 0.137 0.118 0.106 0.065 0.138 0.149 0.134 0.122 Minimum 6.580 6.440 1.357 0.901 0.654 0.787 0.495 0.505 0.675 0.803 0.188 0.474 Maximum 7.587 7.441 1.435 1.022 0.792 0.905 0.601 0.570 0.813 0.952 0.322 0.597 Mean 7.167 7.012 1.409 0.964 0.729 0.836 0.543 0.536 0.730 0.868 0.259 0.516 Standard Error 0.114 0.114 0.009 0.012 0.015 0.012 0.013 0.007 0.014 0.017 0.014 0.013 Standard Deviation 0.341 0.342 0.027 0.035 0.044 0.037 0.038 0.021 0.043 0.050 0.041 0.039 Sample Variance 0.117 0.117 0.001 0.001 0.002 0.001 0.001 0.000 0.002 0.002 0.002 0.002 CV 4.764 4.877 1.900 3.627 6.019 4.482 6.915 3.908 5.913 5.716 15.864 7.579 H omo sapiens, male only, tibia tLEN1 tLEN2 tPML tPAP tLFAP tMFAP tLFML tMFML tDAP tDML tMMPD tDASM L Count 9 9 9 9 9 9 9 9 9 9 9 9 Range 0.811 1.179 0.095 0.111 0.120 0.106 0.100 0.119 0.119 0.096 0.119 0.166 Minimum 6.586 6.122 1.362 0.925 0.661 0.791 0.470 0.478 0.681 0.849 0.229 0.444 Maximum 7.397 7.301 1.457 1.035 0.781 0.897 0.570 0.597 0.801 0.944 0.348 0.610 Mean 7.007 6.829 1.403 0.976 0.722 0.855 0.535 0.536 0.736 0.878 0.266 0.512 Standard Error 0.080 0.108 0.011 0.014 0.012 0.013 0.011 0.013 0.011 0.009 0.012 0.017 Standard Deviation 0.241 0.324 0.033 0.041 0.035 0.038 0.032 0.040 0.032 0.028 0.036 0.050 Sample Variance 0.058 0.105 0.001 0.002 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.003 CV 3.437 4.739 2.319 4.189 4.793 4.501 5.977 7.384 4.373 3.153 13.641 9.808 235 Tibial Measures of Variance, Split Sexes, GM adjusted P an troglodytes, female only, tibia tLEN1 tLEN2 tPML tPAP tLFAP tMFAP tLFML tMFML tDAP tDML tMMPD tDASM L Count 9 8 9 9 9 9 9 9 9 9 9 9 Range 0.984 0.924 0.106 0.074 0.143 0.139 0.118 0.060 0.225 0.098 0.085 0.139 Minimum 5.589 5.340 1.341 0.877 0.678 0.715 0.540 0.566 0.600 0.809 0.300 0.501 Maximum 6.573 6.264 1.448 0.951 0.820 0.853 0.658 0.626 0.824 0.907 0.385 0.639 Mean 6.098 5.830 1.405 0.918 0.737 0.787 0.605 0.589 0.649 0.857 0.336 0.576 Standard Error 0.114 0.128 0.012 0.008 0.014 0.018 0.010 0.007 0.023 0.011 0.008 0.015 Standard Deviation 0.343 0.363 0.035 0.025 0.042 0.055 0.031 0.020 0.070 0.033 0.025 0.046 Sample Variance 0.117 0.132 0.001 0.001 0.002 0.003 0.001 0.000 0.005 0.001 0.001 0.002 CV 5.618 6.222 2.494 2.712 5.724 6.953 5.125 3.330 10.754 3.842 7.468 7.909 Pan troglodytes, male only, tibia tLEN1 tLEN2 tPML tPAP tLFAP tMFAP tLFML tMFML tDAP tDML tMMPD tDASM L Count 6 6 6 6 6 6 6 6 6 6 6 6 Range 1.028 1.030 0.098 0.025 0.206 0.192 0.087 0.077 0.074 0.098 0.071 0.153 Minimum 5.531 5.298 1.347 0.910 0.626 0.662 0.546 0.557 0.597 0.834 0.294 0.543 Maximum 6.559 6.328 1.445 0.935 0.832 0.853 0.633 0.634 0.671 0.932 0.365 0.696 Mean 6.025 5.859 1.395 0.920 0.718 0.789 0.578 0.602 0.628 0.891 0.332 0.618 Standard Error 0.173 0.169 0.015 0.004 0.029 0.028 0.012 0.013 0.012 0.017 0.010 0.026 Standard Deviation 0.424 0.413 0.037 0.009 0.072 0.069 0.030 0.033 0.030 0.042 0.025 0.063 Sample Variance 0.180 0.171 0.001 0.000 0.005 0.005 0.001 0.001 0.001 0.002 0.001 0.004 CV 7.035 7.057 2.678 0.985 9.999 8.709 5.188 5.479 4.846 4.664 7.413 10.205 236 Tibial Measures of Variance, Split Sexes, GM adjusted P apio hamadryas, female only, tibia tLEN1 tLEN2 tPML tPAP tLFAP tMFAP tLFML tMFML tDAP tDML tMMPD tDASM L Count 6 6 11 11 11 11 8 8 6 11 8 8 Range 1.148 1.150 0.104 0.151 0.161 0.119 0.069 0.090 0.046 0.121 0.140 0.112 Minimum 6.880 6.518 1.244 0.903 0.701 0.746 0.531 0.498 0.664 0.742 0.222 0.456 Maximum 8.028 7.668 1.348 1.054 0.862 0.865 0.600 0.589 0.709 0.863 0.362 0.568 Mean 7.293 6.946 1.279 0.977 0.743 0.816 0.569 0.537 0.685 0.818 0.274 0.526 Standard Error 0.194 0.196 0.009 0.015 0.013 0.010 0.008 0.010 0.007 0.011 0.016 0.016 Standard Deviation 0.475 0.481 0.031 0.050 0.044 0.033 0.022 0.028 0.016 0.035 0.046 0.046 Sample Variance 0.225 0.232 0.001 0.002 0.002 0.001 0.000 0.001 0.000 0.001 0.002 0.002 CV 6.508 6.927 2.406 5.080 5.976 4.008 3.799 5.250 2.342 4.281 16.848 8.689 Papio hamadryas, male only, tibia tLEN1 tLEN2 tPML tPAP tLFAP tMFAP tLFML tMFML tDAP tDML tMMPD tDASM L Count 14 14 24 24 24 24 15 15 14 24 15 15 Range 0.924 0.918 0.170 0.219 0.146 0.189 0.115 0.044 0.082 0.148 0.139 0.124 Minimum 6.657 6.320 1.212 0.873 0.664 0.723 0.521 0.526 0.641 0.734 0.232 0.452 Maximum 7.581 7.238 1.382 1.092 0.810 0.912 0.636 0.571 0.723 0.882 0.371 0.576 Mean 6.983 6.709 1.302 0.989 0.753 0.827 0.582 0.547 0.680 0.821 0.283 0.533 Standard Error 0.074 0.083 0.008 0.013 0.008 0.009 0.008 0.004 0.007 0.007 0.012 0.010 Standard Deviation 0.278 0.309 0.038 0.062 0.038 0.043 0.030 0.014 0.026 0.036 0.046 0.039 Sample Variance 0.077 0.096 0.001 0.004 0.001 0.002 0.001 0.000 0.001 0.001 0.002 0.001 CV 3.975 4.609 2.896 6.222 5.066 5.175 5.166 2.481 3.886 4.362 16.181 7.256 237 Tibial Measures of Variance, Split Sexes, GM adjusted T heropithecus gelada, female only, tibia tLEN1 tLEN2 tPML tPAP tLFAP tMFAP tLFML tMFML tDAP tDML tMMPD tDASM L Count 5 5 5 5 5 5 4 4 5 5 4 4 Range 0.180 0.187 0.041 0.147 0.038 0.105 0.052 0.028 0.042 0.066 0.106 0.070 Minimum 7.180 6.851 1.284 0.887 0.727 0.732 0.515 0.534 0.657 0.790 0.240 0.503 Maximum 7.361 7.038 1.325 1.034 0.765 0.837 0.567 0.562 0.699 0.856 0.346 0.572 Mean 7.291 6.922 1.308 0.969 0.746 0.805 0.547 0.552 0.677 0.823 0.292 0.540 Standard Error 0.033 0.036 0.007 0.029 0.006 0.019 0.012 0.006 0.008 0.013 0.026 0.019 Standard Deviation 0.075 0.081 0.017 0.066 0.014 0.042 0.024 0.013 0.018 0.029 0.053 0.037 Sample Variance 0.006 0.007 0.000 0.004 0.000 0.002 0.001 0.000 0.000 0.001 0.003 0.001 CV 1.023 1.167 1.276 6.802 1.887 5.239 4.385 2.328 2.611 3.471 18.090 6.858 Theropithecus gelada, male only, tibia tLEN1 tLEN2 tPML tPAP tLFAP tMFAP tLFML tMFML tDAP tDML tMMPD tDASM L Count 6 6 7 7 7 7 6 6 6 7 6 6 Range 0.763 0.758 0.096 0.164 0.123 0.154 0.141 0.070 0.011 0.119 0.148 0.104 Minimum 7.028 6.704 1.303 0.898 0.667 0.741 0.463 0.496 0.657 0.756 0.231 0.493 Maximum 7.791 7.462 1.398 1.062 0.789 0.895 0.605 0.566 0.668 0.875 0.379 0.598 Mean 7.430 7.065 1.339 0.995 0.726 0.805 0.548 0.536 0.661 0.836 0.281 0.563 Standard Error 0.104 0.112 0.012 0.023 0.016 0.024 0.025 0.011 0.002 0.015 0.027 0.017 Standard Deviation 0.255 0.274 0.031 0.061 0.044 0.064 0.061 0.026 0.004 0.041 0.066 0.041 Sample Variance 0.065 0.075 0.001 0.004 0.002 0.004 0.004 0.001 0.000 0.002 0.004 0.002 CV 3.427 3.885 2.301 6.138 5.999 7.967 11.139 4.866 0.677 4.895 23.456 7.269 238 Tibial Measures of Variance, Split Sexes, GM adjusted Macaca fascicularis, female only, tibia tLEN1 tLEN2 tPML tPAP tLFAP tMFAP tLFML tMFML tDAP tDML tMMPD tDASM L Count 2 2 6 6 6 6 6 6 2 6 6 6 Range 0.180 0.218 0.117 0.128 0.096 0.220 0.158 0.039 0.002 0.114 0.115 0.189 Minimum 8.190 7.882 1.219 0.883 0.772 0.733 0.463 0.495 0.642 0.773 0.232 0.451 Maximum 8.370 8.099 1.336 1.011 0.867 0.953 0.620 0.534 0.644 0.887 0.347 0.640 Mean 8.280 7.990 1.290 0.950 0.816 0.813 0.572 0.509 0.643 0.821 0.274 0.553 Standard Error 0.090 0.109 0.018 0.022 0.015 0.036 0.024 0.006 0.001 0.020 0.018 0.025 Standard Deviation 0.127 0.154 0.045 0.055 0.038 0.087 0.059 0.015 0.002 0.048 0.043 0.061 Sample Variance 0.016 0.024 0.002 0.003 0.001 0.008 0.003 0.000 0.000 0.002 0.002 0.004 CV 1.537 1.927 3.514 5.761 4.630 10.700 10.248 2.933 0.252 5.883 15.844 10.986 M acaca fascicularis, male only, tibia tLEN1 tLEN2 tPML tPAP tLFAP tMFAP tLFML tMFML tDAP tDML tMMPD tDASM L Count 3 3 6 6 6 6 6 6 3 6 6 6 Range 0.645 0.611 0.118 0.093 0.102 0.136 0.069 0.081 0.010 0.128 0.129 0.076 Minimum 7.193 6.958 1.211 0.892 0.711 0.712 0.550 0.496 0.647 0.736 0.212 0.499 Maximum 7.839 7.569 1.329 0.985 0.813 0.848 0.619 0.577 0.656 0.863 0.341 0.575 Mean 7.478 7.210 1.264 0.932 0.776 0.795 0.580 0.549 0.651 0.800 0.272 0.536 Standard Error 0.190 0.184 0.019 0.016 0.018 0.021 0.010 0.013 0.003 0.021 0.022 0.011 Standard Deviation 0.329 0.319 0.046 0.039 0.043 0.052 0.025 0.031 0.005 0.051 0.053 0.028 Sample Variance 0.108 0.102 0.002 0.002 0.002 0.003 0.001 0.001 0.000 0.003 0.003 0.001 CV 4.401 4.427 3.610 4.190 5.561 6.489 4.237 5.719 0.753 6.406 19.484 5.188 239 Tibial Measures of Variance, Split Sexes, GM adjusted Macaca nemestrina, female only, tibia tLEN1 tLEN2 tPML tPAP tLFAP tMFAP tLFML tMFML tDAP tDML tMMPD tDASM L Count 2 2 4 4 4 4 4 4 2 4 4 4 Range 0.753 0.714 0.062 0.055 0.082 0.055 0.063 0.062 0.032 0.107 0.102 0.118 Minimum 7.522 7.227 1.255 0.863 0.674 0.747 0.551 0.524 0.635 0.761 0.232 0.475 Maximum 8.275 7.941 1.317 0.918 0.756 0.801 0.614 0.586 0.668 0.868 0.334 0.594 Mean 7.899 7.584 1.279 0.884 0.723 0.781 0.585 0.543 0.652 0.813 0.284 0.535 Standard Error 0.376 0.357 0.013 0.013 0.017 0.012 0.013 0.015 0.016 0.022 0.027 0.025 Standard Deviation 0.532 0.505 0.027 0.025 0.035 0.024 0.026 0.029 0.023 0.045 0.055 0.049 Sample Variance 0.283 0.255 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.003 0.002 CV 6.739 6.659 2.090 2.840 4.790 3.050 4.460 5.393 3.515 5.486 19.205 9.243 Macaca nemestrina, male only, tibia tLEN1 tLEN2 tPML tPAP tLFAP tMFAP tLFML tMFML tDAP tDML tMMPD tDASM L Count 2 2 5 5 5 5 4 4 2 5 4 4 Range 1.187 1.202 0.194 0.262 0.077 0.066 0.265 0.100 0.009 0.081 0.083 0.108 Minimum 7.123 6.748 1.222 0.895 0.731 0.740 0.429 0.479 0.661 0.762 0.230 0.427 Maximum 8.310 7.951 1.416 1.157 0.808 0.807 0.694 0.579 0.670 0.843 0.313 0.534 Mean 7.717 7.349 1.336 0.985 0.769 0.775 0.572 0.536 0.666 0.802 0.257 0.477 Standard Error 0.593 0.601 0.035 0.047 0.014 0.013 0.056 0.022 0.005 0.016 0.019 0.023 Standard Deviation 0.839 0.850 0.078 0.105 0.031 0.029 0.112 0.045 0.007 0.035 0.038 0.045 Sample Variance 0.704 0.723 0.006 0.011 0.001 0.001 0.013 0.002 0.000 0.001 0.001 0.002 CV 10.875 11.569 5.852 10.641 3.992 3.777 19.647 8.345 0.985 4.400 14.596 9.512 240 APPENDIX F PRINCIPAL COMPONENT ANALYSES, SCATTER PLOTS AND EIGENVALUES This appendix contains all principal components analyses which were performed in Chapter 2. For each bony element, a principal components analysis was performed in order to assess variation within the samples. Results from these analyses are described using scatter plots of all six study species, including confidence ellipses, with both pooled sexes and split-sex groups depicted. Additionally, the associated Eigenvalues and their percent variance are also included in their entirety for each bony element. Note that pooled sexes and split-sex scatter plots differ only in confidence ellipses, and thus their visual aspects, due to differences in variable labeling; Eigenvalues of these samples remain the same. 241 Humerus PC Eigenvalue % variance 1 0.1716 72.783 2 0.0424795 18.017 3 0.00836758 3.5491 4 0.00468002 1.985 5 0.00261534 1.1093 6 0.00134251 0.56942 Scatter Plot Key 7 0.00105775 0.44864 Taxon Color N=78 8 0.000962657 0.4083 Homo sapiens Blue 18 9 0.000742309 0.31485 Pan troglodytes Yellow 14 10 0.000666595 0.28273 Papio hamadryas Red 21 11 0.000493722 0.20941 Theropithecus gelada Green 13 12 0.00037792 0.16029 Macaca fascicularis Orange 9 13 0.000291976 0.12384 Macaca nemestrina Purple 3 14 9.17355E-05 0.038909 Pooled Sexes Split Sexes 242 Radius PC Eigenvalue % variance 1 0.90889 91.269 2 0.0679089 6.8193 3 0.00991483 0.99563 Scatter Plot Key 4 0.0033872 0.34014 Taxon Color N=70 5 0.00169435 0.17014 Homo sapiens Blue 18 6 0.00155052 0.1557 Pan troglodytes Yellow 15 7 0.000988257 0.099239 Papio hamadryas Red 18 8 0.000830276 0.083375 Theropithecus gelada Green 11 9 0.00048528 0.048731 Macaca fascicularis Orange 5 10 0.000182926 0.018369 Macaca nemestrina Purple 3 Pooled Sexes Split Sexes 243 Femur PC Eigenvalue % variance 1 0.75491 84.866 2 0.0895821 10.071 3 0.00834635 0.93829 4 0.00699067 0.78588 5 0.00587392 0.66034 Scatter Plot Key 6 0.00549499 0.61774 Taxon Color N=74 7 0.00442741 0.49772 Homo sapiens Blue 18 8 0.00321913 0.36189 Pan troglodytes Yellow 13 9 0.00244207 0.27454 Papio hamadryas Red 19 10 0.0018523 0.20823 Theropithecus gelada Green 10 11 0.00164163 0.18455 Macaca fascicularis Orange 10 12 0.00139037 0.1563 Macaca nemestrina Purple 4 13 0.00102823 0.11559 14 0.000877164 0.09861 15 0.000814995 0.091621 16 0.00051042 0.057381 17 0.000128962 0.014498 Pooled Sexes Split Sexes 244 Tibia PC Eigenvalue % variance 1 0.777344 96.025 2 0.0114036 1.4087 3 0.00586926 0.72503 Scatter Plot Key 4 0.00486841 0.60139 Taxon Color N=73 5 0.00263299 0.32525 Homo sapiens Blue 18 6 0.00202432 0.25006 Pan troglodytes Yellow 15 7 0.00170458 0.21057 Papio hamadryas Red 20 8 0.00125982 0.15563 Theropithecus gelada Green 11 9 0.00097727 0.12072 Macaca fascicularis Orange 5 10 0.000762791 0.094227 Macaca nemestrina Purple 4 11 0.000463509 0.057257 12 0.000209597 0.025891 Pooled Sexes Split Sexes 245 APPENDIX G POSTCRANIAL ANALYSES OF VARIANCE This appendix contains results derived from analyses of variance, including boxplots and p-values reported from ANOVAs to discern significant variation among species. All six sample species were described using three measures of variance: standard deviation, sample variance, and coefficient of variation. Each of these statistics were used to compare patterns of variation within each bony element (Humerus, Radius, Femur, Tibia), and also across the limbs using variable sets (Skeletal, Total; Skeletal, Length; Skeletal, Width). Further, each measure of variance was performed on raw data, and also performed on data which has been adjusted by the geometric mean to reduce the effects of body size. Thus, each bony element measurement set, and each variable set, are reported here as the results of six ANOVAs per set. A summary of results from these analyses is provided below. Complete methodologies for these analyses are described in Chapter 2. For each ANOVA performed, corrected alpha levels were applied to determine true significance in variation differences, given the number of groups tested. Where statistical significance was achieved in ANOVAs, p-values are bolded (see Results Summary); where significance was also achieved using corrected alpha levels, p-values are marked with an asterisk. Results Summary Stan Dev Adj SD Samp Var Adj SV Coef Var Adj CV Humerus 0.5882 0.4522 0.6265 0.1277 <.0001* 0.1475 Radius 0.9768 0.5725 0.9535 0.3124 <.0001* 0.4795 Femur 0.6617 0.7469 0.7101 0.4972 <.0001* 0.3362 Tibia 0.9246 0.8750 0.8774 0.6163 <.0001* 0.7775 Skeletal, Total 0.4586 0.1417 0.4123 0.0169 <.0001* 0.2922 Skeletal, Length 0.0001* <.0001* 0.0002* <.0001* <.0001* <.0001* Skeletal, Width <.0001* 0.5905 <.0001* 0.7507 <.0001* 0.9112 246 HUMERUS, Standard Deviation Means with the same letter are not significantly different. Bon Grouping Mean N Taxon A 8.799 14 HS A 7.112 14 PT A 6.975 14 PH A 5.280 14 TG A 5.234 14 MN A 5.201 14 MF HUMERUS, Standard Deviation, GM adjusted Means with the same letter are not significantly different. Bon Grouping Mean N Taxon A 0.12753 14 MF A 0.08922 14 MN A 0.08544 14 HS A 0.07442 14 PH A 0.06355 14 PT A 0.05244 14 TG 247 HUMERUS, Sample Variance Means with the same letter are not significantly different. Bon Grouping Mean N Taxon A 129.51 14 HS A 96.51 14 PT A 86.79 14 PH A 58.63 14 TG A 57.16 14 MN A 51.48 14 MF HUMERUS, Sample Variance, GM adjusted Means with the same letter are not significantly different. Bon Grouping Mean N Taxon A 0.04271 14 MF A 0.02099 14 MN A 0.01370 14 HS A 0.00973 14 PH A 0.00790 14 PT A 0.00464 14 TG 248 HUMERUS, Coefficient of Variation* Means with the same letter are not significantly different. Bon Grouping Mean N Taxon A 15.7584 14 MF B 11.8968 14 PH C B 10.4636 14 HS C B 10.3559 14 MN C B 9.2919 14 TG C 8.0374 14 PT HUMERUS, Coefficient of Variation, GM adjusted Means with the same letter are not significantly different. Bon Grouping Mean N Taxon A 6.5652 14 MF A 5.9407 14 HS A 5.9066 14 PH A 4.8275 14 MN A 4.4499 14 PT A 4.4066 14 TG 249 RADIUS, Standard Deviation Means with the same letter are not significantly different. Bon Grouping Mean N Taxon A 6.477 10 PT A 5.728 10 MN A 5.669 10 HS A 5.446 10 MF A 5.445 10 PH A 3.968 10 TG RADIUS, Standard Deviation, GM adjusted Means with the same letter are not significantly different. Bon Grouping Mean N Taxon A 0.18447 10 MF A 0.13402 10 MN A 0.11676 10 PH A 0.10935 10 HS A 0.07900 10 PT A 0.06560 10 TG 250 RADIUS, Sample Variance Means with the same letter are not significantly different. Bon Grouping Mean N Taxon A 98.77 10 PT A 77.54 10 MN A 73.62 10 HS A 65.95 10 MF A 61.08 10 PH A 36.60 10 TG RADIUS, Sample Variance, GM adjusted Means with the same letter are not significantly different. Bon Grouping Mean N Taxon A 0.09447 10 MF A 0.04485 10 MN A 0.03031 10 PH A 0.02565 10 HS A 0.01110 10 PT A 0.00670 10 TG 251 RADIUS, Coefficient of Variation* Means with the same letter are not significantly different. Bon Grouping Mean N Taxon A 21.319 10 MF B A 17.098 10 MN B 13.224 10 PH B 10.688 10 TG B 10.187 10 HS B 9.729 10 PT RADIUS, Coefficient of Variation, GM adjusted Means with the same letter are not significantly different. Bon Grouping Mean N Taxon A 9.950 10 MF A 8.597 10 MN A 8.128 10 PH A 7.687 10 HS A 6.662 10 PT A 6.652 10 TG 252 FEMUR, Standard Deviation Means with the same letter are not significantly different. Bon Grouping Mean N Taxon A 6.694 17 HS A 5.932 17 MN A 5.324 17 PT A 5.153 17 PH A 3.632 17 TG A 3.581 17 MF FEMUR, Standard Deviation, GM adjusted Means with the same letter are not significantly different. Bon Grouping Mean N Taxon A 0.11572 17 MN A 0.09499 17 MF A 0.09102 17 PT A 0.08772 17 HS A 0.07495 17 PH A 0.05715 17 TG 253 FEMUR, Sample Variance Means with the same letter are not significantly different. Bon Grouping Mean N Taxon A 99.65 17 MN A 98.98 17 HS A 78.44 17 PH A 49.56 17 PT A 31.32 17 TG A 31.20 17 MF FEMUR, Sample Variance, GM adjusted Means with the same letter are not significantly different. Bon Grouping Mean N Taxon A 0.04316 17 MN A 0.02206 17 MF A 0.01596 17 HS A 0.01542 17 PT A 0.01427 17 PH A 0.00568 17 TG 254 FEMUR, Coefficient of Variation* Means with the same letter are not significantly different. Bon Grouping Mean N Taxon A 18.225 17 MN B A 15.520 17 MF B C 10.788 17 PT B C 10.585 17 HS C 10.177 17 PH C 10.056 17 TG FEMUR, Coefficient of Variation, GM adjusted Means with the same letter are not significantly different. Bon Grouping Mean N Taxon A 8.194 17 HS A 7.604 17 MN A 7.551 17 PT A 7.066 17 MF A 5.506 17 PH A 5.194 17 TG 255 TIBIA, Standard Deviation Means with the same letter are not significantly different. Bon Grouping Mean N Taxon A 7.317 12 HS A 5.913 12 MN A 5.868 12 PH A 5.202 12 PT A 4.971 12 MF A 4.106 12 TG TIBIA, Standard Deviation, GM adjusted Means with the same letter are not significantly different. Bon Grouping Mean N Taxon A 0.13800 12 MN A 0.11798 12 MF A 0.09457 12 PT A 0.09190 12 PH A 0.08513 12 HS A 0.06757 12 TG 256 TIBIA, Sample Variance Means with the same letter are not significantly different. Bon Grouping Mean N Taxon A 131.82 12 HS A 86.82 12 PH A 81.40 12 MN A 72.56 12 MF A 57.45 12 PT A 43.25 12 TG TIBIA, Sample Variance, GM adjusted Means with the same letter are not significantly different. Bon Grouping Mean N Taxon A 0.05943 12 MN A 0.04257 12 MF A 0.02396 12 PT A 0.02387 12 PH A 0.01900 12 HS A 0.00864 12 TG 257 TIBIA, Coefficient of Variation* Means with the same letter are not significantly different. Bon Grouping Mean N Taxon A 18.121 12 MN A 16.541 12 MF B 12.062 12 PH B 9.953 12 TG B 9.332 12 HS B 9.156 12 PT TIBIA, Coefficient of Variation, GM adjusted Means with the same letter are not significantly different. Bon Grouping Mean N Taxon A 7.733 12 MN A 6.761 12 MF A 6.028 12 TG A 5.959 12 PT A 5.839 12 HS A 5.777 12 PH 258 SKELETAL TOTAL, Standard Deviation Means with the same letter are not significantly different. Bon Grouping Mean N Taxon A 7.429 40 HS A 6.594 40 PH A 6.316 40 MN A 6.281 40 PT A 5.022 40 MF A 4.551 40 TG SKELETAL TOTAL, Standard Deviation, GM adjusted Means with the same letter are not significantly different. Bon Grouping Mean N Taxon A 0.13313 40 MF A 0.13263 40 MN A 0.09753 40 PH A 0.09579 40 HS A 0.08541 40 PT A 0.06254 40 TG 259 SKELETAL TOTAL, Sample Variance Means with the same letter are not significantly different. Bon Grouping Mean N Taxon A 120.45 40 HS A 98.84 40 MN A 97.47 40 PH A 80.70 40 PT A 59.90 40 MF A 47.90 40 TG SKELETAL TOTAL, Sample Variance, GM adjusted Means with the same letter are not significantly different. Bon Grouping Mean N Taxon A 0.05236 40 MN A 0.05168 40 MF A 0.02286 40 PH A 0.02072 40 HS A 0.01660 40 PT A 0.00707 40 TG 260 SKELETAL TOTAL, Coefficient of Variation* Means with the same letter are not significantly different. Bon Grouping Mean N Taxon A 16.5992 40 MF A 15.1584 40 MN B 12.1372 40 PH C B 9.7837 40 TG C 9.2124 40 HS C 9.1498 40 PT SKELETAL TOTAL, Coefficient of Variation, GM Adjusted Means with the same letter are not significantly different. Bon Grouping Mean N Taxon A 6.9521 40 MF A 6.7037 40 MN A 6.2237 40 PH A 6.0792 40 HS A 5.7355 40 PT A 5.2376 40 TG 261 SKELETAL LENGTH, Coefficient of Variation* Means with the same letter are not significantly different. Bon Grouping Mean N Taxon A 23.031 8 HS B A 21.132 8 MN B A 20.786 8 PH B A C 18.852 8 PT B C 16.439 8 MF C 14.869 8 TG SKELETAL LENGTH, Coefficient of Variation, GM adjusted* Means with the same letter are not significantly different. Bon Grouping Mean N Taxon A 0.49187 8 MN A 0.48399 8 MF B 0.31843 8 PH B 0.30302 8 HS C B 0.26022 8 PT C 0.16500 8 TG 262 SKELETAL LENGTH, Sample Variance* Means with the same letter are not significantly different. Bon Grouping Mean N Taxon A 544.94 8 HS B A 463.57 8 MN B A 446.92 8 PH B A C 358.57 8 PT B C 277.97 8 MF C 222.65 8 TG SKELETAL LENGTH, Sample Variance, GM Adjusted* Means with the same letter are not significantly different. Bon Grouping Mean N Taxon A 0.25263 8 MN A 0.24873 8 MF B 0.10584 8 PH B 0.09494 8 HS B 0.07430 8 PT B 0.02871 8 TG 263 SKELETAL LENGTH, Coefficient of Variation* Means with the same letter are not significantly different. Bon Grouping Mean N Taxon A 13.2410 8 MF A 12.3889 8 MN B 9.0586 8 PH B 7.7651 8 TG B 7.0534 8 HS B 6.9011 8 PT SKELETAL LENGTH, Coefficient of Variation, GM Adjusted* Means with the same letter are not significantly different. Bon Grouping Mean N Taxon A 6.9603 8 MF A 6.8391 8 MN B 4.6775 8 PH B 4.5709 8 HS B 4.2675 8 PT C 2.4278 8 TG 264 SKELETAL WIDTH, Standard Deviation* Means with the same letter are not significantly different. Bon Grouping Mean N Taxon A 3.5290 32 HS B A 3.1388 32 PT B A 3.0462 32 PH B C 2.6119 32 MN C 2.1680 32 MF C 1.9719 32 TG SKELETAL WIDTH, Standard Deviation, GM adjusted Means with the same letter are not significantly different. Bon Grouping Mean N Taxon A 0.045419 32 5MF A 0.043982 32 1HS A 0.042821 32 6MN A 0.042307 32 3PH A 0.041705 32 2PT A 0.036928 32 4TG 265 SKELETAL WIDTH, Sample Variance* Means with the same letter are not significantly different. Bon Grouping Mean N Taxon A 14.328 32 HS B A 11.228 32 PT B A C 10.114 32 PH B D C 7.662 32 MN D C 5.387 32 MF D 4.212 32 TG SKELETAL WIDTH, Sample Variance, GM adjusted Means with the same letter are not significantly different. Bon Grouping Mean N Taxon A 0.002413 32 MF A 0.002298 32 MN A 0.002172 32 PT A 0.002163 32 HS A 0.002116 32 PH A 0.001658 32 TG 266 SKELETAL WIDTH, Coefficient of Variation* Means with the same letter are not significantly different. Bon Grouping Mean N Taxon A 17.439 32 MF B A 15.851 32 MN B C 12.907 32 PH D C 10.288 32 TG D C 9.752 32 HS D 9.712 32 PT SKELETAL WIDTH, Coefficient of Variation, GM adjusted Means with the same letter are not significantly different. Bon Grouping Mean N Taxon A 6.9500 32 MF A 6.6699 32 MN A 6.6103 32 PH A 6.4563 32 HS A 6.1025 32 PT A 5.9401 32 TG 267 REFERENCES CITED Abegg, C., & Thierry, B. (2002). Macaque evolution and dispersal in insular south‐east Asia. Biological Journal of the Linnean Society, 75(4), 555-576. Aiello, L. C., & Wood, B. A. (1994). Cranial variables as predictors of hominine body mass. American Journal of Physical Anthropology, 95(4), 409-26. Alberts, S. C., & Altmann, J. (2006). The evolutionary past and the research future: environmental variation and life history flexibility in a primate lineage. In Reproduction and Fitness in Baboons: Behavioral, Ecological, and Life History Perspectives. Springer US. 277-303. Ash, J., & Gallup Jr, G. G. (2007). Paleoclimatic variation and brain expansion during human evolution. Human Nature, 18(2), 109-124. Antón, S.C., Taboada, H.G., Middleton, E.R., Rainwater, C.W., Taylor, A.B., Turner, T.R., Turnquist, J.E., Weinstein, K.J. and Williams, S.A. (2016). Morphological variation in Homo erectus and the origins of developmental plasticity. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1698), p.20150236. Antón, S. C., Potts, R., & Aiello, L. C. (2014). Evolution of early Homo: An integrated biological perspective. Science, 345(6192), 1236828. Antón, S. C., & Snodgrass, J. J. (2012). Origins and Evolution of Genus Homo. Current Anthropology, 53(S6), S479-S496. Beldade, P., Mateus, A. R. A., & Keller, R. A. (2011). Evolution and molecular mechanisms of adaptive developmental plasticity. Molecular Ecology, 20(7), 1347-1363. Bell, G. (2010). Fluctuating selection: the perpetual renewal of adaptation in variable environments. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1537), 87-97. Bobe, R. (2006). The evolution of arid ecosystems in eastern Africa. Journal of Arid Environments, 66(3), 564-584. Borg, J. M., & Channon, A. (2012). Testing the variability selection hypothesis: The adoption of social learning in increasingly variable environments. Artificial Life Conference Proceedings, 12, 317-324. Cerling, T.E., Wynn, J.G., Andanje, S.A., Bird, M.I., Korir, D.K., Levin, N.E., Mace, W., Macharia, A.N., Quade, J. and Remien, C.H. (2011). Woody cover and hominin environments in the past 6 [thinsp] million years. Nature, 476(7358), 51-56. 268 Cooke, S.B. and Terhune, C.E. (2015). Form, function, and geometric morphometrics. The Anatomical Record, 298(1), 5-28. Cunningham, C., Scheuer, L. and Black, S. (2016). Developmental juvenile osteology. Academic Press. Darwin, C. (1859). On the origin of species. Republished in 2004 by Routledge. Davidson, A. M., Jennions, M., & Nicotra, A. B. (2011). Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta‐ analysis. Ecology letters, 14(4), 419-431. Deinard, A. and Kidd, K., (1999). Evolution of a HOXB6 intergenic region within the great apes and humans. Journal of Human Evolution, 36(6), 687-703. Delson, E. (1980). Fossil macaques, phyletic relationships and a scenario of deployment. The Macaques: Studies in ecology, behavior and evolution, 10-30. Delson, E., Tattersall, I., Van Couvering, J., & Brooks, A. S., Eds. (2004). Encyclopedia of human evolution and prehistory. Routledge. Delson, E., Terranova, C.J., Jungers, W.L., Sargis, E.J. and Jablonski, N.G. (2000). Body mass in Cercopithecidae (Primates, Mammalia): estimation and scaling in extinct and extant taxa. Anthropological papers of the AMNH; no. 83. demenocal, P. B. (2004). African climate change and faunal evolution during the Pliocene–Pleistocene. Earth and Planetary Science Letters, 220(1-2), 3-24. deMenocal, P.B.D. and Bloemendal, J. (1995). Plio-Pleistocene climatic variability in subtropical Africa and the paleoenvironment of hominid evolution: a combined data-model approach. Paleoclimate and Evolution with Emphasis on Human Origins. Yale University Press, New Haven, 262-288. DeRousseau, C. J., & Reichs, K. J. (1987). Ontogenetic plasticity in nonhuman primates: I. Secular trends in the Cayo Santiago macaques. American journal of physical anthropology, 73(3), 279-287. Devictor, V., Julliard, R. and Jiguet, F. (2008). Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos, 117(4), 507-514. DeVore, I. and Washburn, S.L. (1963). Baboon ecology and human evolution. African ecology and human evolution, 335-367. 269 Eller, A., Frost, S.R. and Guthrie, E.H. (2011). Body mass estimation in Old World monkeys using long bone ends. Published abstract in American journal of physical anthropology, 144, 132. Elton, S. (2001). Locomotor and habitat classifications of cercopithecoid postcranial material from Sterkfontein Member 4, Bolt's Farm and Swartkrans Members 1 and 2, South Africa. Palaeontologia Africana. Vol. 37. Freedman, L. (1957). The fossil cercopithecoidea of South Africa. Annals of the Transvaal Museum, 23(3), 121-262. Forsman, A. (2015). Rethinking phenotypic plasticity and its consequences for individuals, populations and species. Heredity. 115, 276–284. Frost, S.R., Marcus, L.F., Bookstein, F.L., Reddy, D.P. and Delson, E. (2003). Cranial allometry, phylogeography, and systematics of large‐bodied papionins (primates: Cercopithecinae) inferred from geometric morphometric analysis of landmark data. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 275(2), 1048-1072. Futuyma, D.J. and Moreno, G. (1988). The evolution of ecological specialization. Annual review of Ecology and Systematics, 19(1), 207-233. Gilbert, C.C. and Grine, F.E. (2010). Morphometric variation in the papionin muzzle and the biochronology of the South African Plio‐Pleistocene karst cave deposits. American Journal of Physical Anthropology, 141(3), 418-429. Gilbert, C.C., Frost, S.R., Pugh, K.D., Anderson, M. and Delson, E. (2018). Evolution of the modern baboon (Papio hamadryas): A reassessment of the African Plio- Pleistocene record. Journal of Human Evolution, 122, 38-69. Grine, F.E., Kay, R.F. (1988). Early hominid diets from quantitative image analysis of dental microwear. Nature 333, 765-768. Grove, M., Lamb, H., Roberts, H., Davies, S., Marshall, M., Bates, R. and Huws, D. (2015). Climatic variability, plasticity, and dispersal: a case study from Lake Tana, Ethiopia. Journal of Human Evolution. 87, 32-47. Grove, M. (2014). Evolution and dispersal under climatic instability: a simple evolutionary algorithm. Adapt. Behav. 22, 235-254. Grove, M. (2011). Speciation, diversity, and Mode 1 technologies: The impact of variability selection. Journal of Human Evolution, 61(3), 306-319. Guthrie, E.H. (2011). Functional morphology of the postcranium of Theropithecus brumpti (Primates: Cercopithecidae). Doctoral dissertation, University of Oregon. 270 Hammer, Ø., Harper, D.A.T., and P. D. Ryan. (2001). PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica 4(1): 9pp. Harvati, K., Frost, S.R. and McNulty, K.P. (2004). Neanderthal taxonomy reconsidered: implications of 3D primate models of intra-and interspecific differences. Proceedings of the National Academy of Sciences, 101(5), 1147-1152. Hill, S.E. and Winder, I.C. (2019). Predicting the impacts of climate change on Papio baboon biogeography: Are widespread, generalist primates ‘safe’? Journal of Biogeography, 46(7), 1380-1405. Howells, W.W. (1973). Cranial variation in man. A study by multivariate analysis of patterns of difference. Among recent human populations. Papers of the Peabody Museum of Archaeology and Ethnology, (67), 1-259. Irish, J.D. and Scott, G.R. (2015). A Companion to Dental Anthropology. John Wiley & Sons. IUCN (2018). The IUCN Red List of Threatened Species. Version 2018-2. http://www.iucnredlist.org. Downloaded on 14 November 2018. Iwamoto, T. (1993). The ecology of Theropithecus gelada. Theropithecus: The rise and fall of a primate genus, 441-452. Jablonka, E. and Lamb, M.J. (2014). Evolution in four dimensions, revised edition: Genetic, epigenetic, behavioral, and symbolic variation in the history of life. MIT press. Jablonski, N. G. (2002). Fossil Old World monkeys: the late Neogene radiation. In The primate fossil record (Vol. 33). Ed. W. C. Hartwig. Cambridge University Press. 255-99. Jablonski, N.G. and Frost, S. (2010). "Cercopithecoidae". Cenozoic Mammals of Africa, eds Werdelin L, Sanders WJ. Jolly, C. J. (2009). Fifty years of looking at human evolution. Current Anthropology, 50(2), 187-199. Jolly, C.J. (2001). A proper study for mankind: analogies from the papionin monkeys and their implications for human evolution. American journal of physical anthropology, 116(S33), 177-204. Jolly, C.J. and Brett, F.L. (1973). Genetic markers and baboon biology. Journal of medical primatology, 2, 85-99. 271 Kassen, R. (2002). The experimental evolution of specialists, generalists, and the maintenance of diversity. Journal of evolutionary biology, 15(2), 173-190. Keppel, G. (1993). Design and Analysis: A Researcher’s Handbook. Pearson. Kelly, S. A., Panhuis, T. M., & Stoehr, A. M. (2012). Phenotypic plasticity: molecular mechanisms and adaptive significance. Comprehensive Physiology, Vol. 2. Kimbel, W.H., Rak, Y. and Johanson, D.C. (2004). The skull of Australopithecus afarensis. Oxford University Press. Krebs, J.R., & Davies, N.B. (1993). An introduction to behavioral ecology, 3rd ed. Oxford, UK. Blackwell Scientific Publishers. Kussell, E., & Leibler, S. (2005). Phenotypic diversity, population growth, and information in fluctuating environments. Science, 309(5743), 2075-2078. Kuzawa, C. W., & Jared, M. Bragg. (2012). Plasticity in human life history strategy: implications for contemporary human variation and the evolution of genus Homo. Current Anthropology, 53, S369-S382. Lachmann, M., & Jablonka, E. (1996). The inheritance of phenotypes: an adaptation to fluctuating environments. Journal of theoretical biology, 181(1), 1-9. Lande, R. (2014). Evolution of phenotypic plasticity and environmental tolerance of a labile quantitative character in a fluctuating environment. Journal of evolutionary biology, 27(5), 866-875. Lande, R. (2009). Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation. Journal of evolutionary biology, 22(7), 1435- 1446. Lande, R., & Shannon, S. (1996). The role of genetic variation in adaptation and population persistence in a changing environment. Evolution, 50(1), 434-437. Leakey, M. G., Spoor, F., Dean, M. C., Feibel, C. S., Antón, S. C., Kiarie, C., and Leakey, L. N. (2012). New fossils from Koobi Fora in northern Kenya confirm taxonomic diversity in early Homo. Nature 488, 201–204. Levin, N.E. (2015). Environment and climate of early human evolution. Annual Review of Earth and Planetary Sciences, 43, 405-429. Levins, R. (1968). Evolution in changing environments: some theoretical explorations. Princeton University Press. 272 MacDonald, K., Smaers, J.B. and Steele, J. (2015). Hominin geographical range dynamics and relative brain size: Do non-human primates provide a good analogy? Journal of human evolution, 87, 66-77. Marvier, M., Kareiva, P. and Neubert, M.G. (2004). Habitat destruction, fragmentation, and disturbance promote invasion by habitat generalists in a multispecies metapopulation. Risk Analysis: An International Journal, 24(4), 869-878. Matsuda, R. (1987). Animal evolution in changing environments: with special reference to abnormal metamorphosis. Wiley Press. Mittermeier, R.A. (1988). Primate diversity and the tropical forest. Biodiversity, 145-154. Morante‐Filho, J.C., Arroyo‐Rodríguez, V. and Faria, D. (2016). Patterns and predictors of β‐diversity in the fragmented Brazilian Atlantic forest: a multiscale analysis of forest specialist and generalist birds. Journal of Animal Ecology, 85(1), 240-250. Mosimann, J.E. and Malley, J.D. (1979). Size and shape variables. Multivariate methods in ecological work, 175-189. Müller, G. B. (2007). Evo–devo: extending the evolutionary synthesis. Nature Reviews Genetics, 8(12), 943-949. Östergård, H. and Ehrlén, J. (2005). Among population variation in specialist and generalist seed predation–the importance of host plant distribution, alternative hosts and environmental variation. Oikos, 111(1), 39-46. Parsons, P. A. (1983). The evolutionary biology of colonizing species. Cambridge University Press. Pfennig, D. W., Wund, M. A., Snell-Rood, E. C., Cruickshank, T., Schlichting, C. D., & Moczek, A. P. (2010). Phenotypic plasticity's impacts on diversification and speciation. Trends in ecology & evolution, 25(8), 459-467. Pigliucci, M., & Müller, G. B. (2010). Evolution: the extended synthesis. Massachusetts Institute of Technology Press.
 Pigliucci, M. (2001). Phenotypic plasticity: beyond nature and nurture. Johns Hopkins University Press.
 Plavcan, J.M. and Cope, D.A. (2001). Metric variation and species recognition in the fossil record. Evolutionary Anthropology: Issues, News, and Reviews: Issues, News, and Reviews, 10(6), 204-222. Pontzer, H. (2012). Ecological energetics in early Homo. Current Anthropology, 53(S6), S346-S358. 273 Potts, R. and Faith, J.T. (2015). Alternating high and low climate variability: The context of natural selection and speciation in Plio-Pleistocene hominin evolution. Journal of human evolution. 87, 5-20. Potts, R. (2013). Hominin evolution in settings of strong environmental variability. Quaternary Science Reviews, 73, 1-13. Potts, R. (2012). Environmental and Behavioral Evidence Pertaining to the Evolution of Early Homo. Current Anthropology, 53(S6), S299-S317. Potts, R. (2002). Complexity and adaptability in human evolution. Probing Human Origins, 33-57. Potts, R. (1998a). Variability selection in hominid evolution. Evolutionary Anthropology: Issues, News, and Reviews, 7(3), 81-96. Potts, R. (1998b). Environmental hypotheses of hominin evolution. American Journal of Physical Anthropology, 107(s 27), 93-136. Potts, R. (1996). Evolution and climate variability. Science, 273(5277), 922-923. Potts, R. (1987). Reconstructions of early hominid socioecology: a critique of primate models. The Evolution of Human Behavior: Primate Models, 28-47. Reed, K.E. (1997). Early hominid evolution and ecological change through the African Plio-Pleistocene. Journal of Human Evolution, 32(2), 289-322. Reynolds, S.C., Bailey, G.N., King, G.C.P. (2011). Landscapes and their relation to hominin habitats: Case studies from Australopithecus sites in eastern and southern Africa. Journal of Human Evolution, 60, 281-298. Richard, A. F., Goldstein, S. J., & Dewar, R. E. (1989). Weed macaques: the evolutionary implications of macaque feeding ecology. International Journal of Primatology, 10(6), 569-594. Rightmire, G. P., Lordkipanidze, D., Vekua, A. (2006). Anatomical descriptions, comparative studies and evolutionary significance of the hominin skulls from Dmanisi, Republic of Georgia. Journal of Human Evolution, 50, 115–141. Rowe, N. and Myers, M. (2016). All the world's primates. The International Encyclopedia of Primatology; Encyclopedia published online at www.alltheworldsprimates.org. 274 Ruff, C.B., Harper, C.M., Goldstein, D.M., Daegling, D.J. and McGraw, W.S. (2019). Long bone structural proportions and locomotor behavior in Cercopithecidae. Journal of Human Evolution, 132, 47-60. Ruff, C.B. (1993). Climatic adaptation and hominid evolution: the thermoregulatory imperative. Evolutionary Anthropology: Issues, News, and Reviews, 2(2), 53-60. Sanchez, S., & Schoch, R. R. (2013). Bone histology reveals a high environmental and metabolic plasticity as a successful evolutionary strategy in a long-lived homeostatic Triassic temnospondyl. Evolutionary Biology, 40(4), 627-647. Schlichting, C.D. and Pigliucci, M. (1998). Phenotypic evolution: a reaction norm perspective. Sinauer Associates Incorporated. Schroeder, L., Roseman, C. C., Cheverud, J. M., & Ackermann, R. R. (2014). Characterizing the evolutionary path (s) to early Homo. PloS one, 9(12), e114307. Simpson, G.G. (1944). Tempo and mode in evolution. Columbia University Press. Simpson, G.G., Roe, A. and Lewontin, R.C. (1960). Quantitative zoology. Republished in 2003, Courier Corporation. Sokal, R. R. and F. J. Rohlf. (2012). Biometry: the principles and practice of statistics in biological research, 4th ed. Freeman: New York. Sponheimer, M., Loudon, J.E., Codron, D., Howells, M.E., Pruetz, J.D., Codron, J., De Ruiter, D.J. and Lee-Thorp, J.A. (2006). Do “savanna” chimpanzees consume C4 resources? Journal of Human Evolution, 51(2), 128-133. Spoor, F., Leakey, M. G., Gathogo, P. N., Brown, F. H., Antón, S. C., McDougall, I., Kiarie, C., Manthi, F. K., and Leakey, L. N. (2007). Implications of new early Homo fossils from Ileret, east of Lake Turkana, Kenya. Nature, 448, 688–691. Stewart, J. R., & Stringer, C. B. (2012). Human evolution out of Africa: the role of refugia and climate change. Science, 335(6074), 1317-1321. Stoessel, A., Kilbourne, B. M., & Fischer, M. S. (2013). Morphological integration versus ecological plasticity in the avian pelvic limb skeleton. Journal of Morphology, 274(5), 483-495. Stone, A.C., Griffiths, R.C., Zegura, S.L. and Hammer, M.F. (2002). High levels of Y- chromosome nucleotide diversity in the genus Pan. Proceedings of the National Academy of Sciences, 99(1), 43-48. Strum, S.C. (2001). Almost human: A journey into the world of baboons. University of Chicago Press. 275 Sullivan, R. (2004). Rats: Observations on the History and Habitat of the City’s most unwanted inhabitants. Bloomsbury, USA. Szalay, F.S. and Delson, E. (1979). Evolutionary history of the primates. Academic Press. Trinkaus, E., Churchill, S. E., & Ruff, C. B. (1994). Postcranial robusticity in Homo. II: Humeral bilateral asymmetry and bone plasticity. American journal of physical anthropology, 93(1), 1-34. Turley, K. and Frost, S.R. (2018). Behaviorally Induced Change in Post-cranial (Upper Ankle Joint) Morphology: Phenotypic Plasticity in an Altered Habitat. Human Evolution, 33(1), 31-46. Turley, K., Simons, E.A. and Frost, S.R. (2018). Trajectory analysis among African hominoids can provide insights into genetic and epigenetic influences during ontogeny. American journal of physical anthropology, 167(1), 173-177. Turner, T.R., Cramer, J.D., Nisbett, A. and Gray, J.P. (2016). A comparison of adult body size between captive and wild vervet monkeys (Chlorocebus aethiops sabaeus) on the island of St. Kitts. Primates, 57(2), 211-220. Vrba, E.S. (1992). Mammals as a key to evolutionary theory. Journal of Mammalogy, 73(1), 1-28. Wang, Q. ed. (2011). Bones, genetics, and behavior of Rhesus macaques: Macaca mulatta of Cayo Santiago and beyond. Springer Science & Business Media. West-Eberhard, M. J. (2005). Developmental plasticity and the origin of species differences. Proceedings of the National Academy of Sciences, 102(S1), 6543-49. West-Eberhard, M. J. (2003). Developmental plasticity and evolution. Oxford University Press, USA. West-Eberhard, M. J. (1989). Phenotypic plasticity and the origins of diversity. Annual Review of Ecology and Systematics, 249-78. West-Eberhard, M. J. (1986). Alternative adaptations, speciation, and phylogeny (a review). Proceedings of the National Academy of Sciences, 83(5), 1388-92. White, T.D., Black, M.T. and Folkens, P.A. (2011). Human osteology. Academic press. Will, M., & Stock, J. T. (2015). Spatial and temporal variation of body size among early Homo. Journal of Human Evolution, 82, 15-33. 276 Wilson, D.E. and Reeder, D.M. eds. (2005). Mammal Species of the World: A Taxonomic and Geographic Reference (3rd ed.). Johns Hopkins University Press. Winder, I.C., Devès, M.H., King, G.C., Bailey, G.N., Inglis, R.H. and Meredith- Williams, M. (2015). Evolution and Dispersal of the genus Homo: a landscape approach. Journal of Human Evolution, 87, 48-65. Wright, S. (1982). The shifting balance theory and macroevolution. Annual review of genetics, 16(1), 1-20. Wynn, J.G. (2004). Influence of Plio‐Pleistocene aridification on human evolution: Evidence from paleosols of the Turkana Basin, Kenya. American Journal of Physical Anthropology, 123(2), 106-18. Yablokov, A.V. (1974). Variability of Mammals. English translation. Amerind Publishing. Zachos, J.C., Schouten, S., Bohaty, S., Quattlebaum, T., Sluijs, A., Brinkhuis, H., Gibbs, S.J. and Bralower, T.J. (2006). Extreme warming of mid-latitude coastal ocean during the Paleocene-Eocene Thermal Maximum: Inferences from TEX86 and isotope data. Geology, 34(9), 737-40. Zichello et al. (2018). Hominoid intraspecific cranial variation mirrors neutral genetic diversity. PNAS 115, 11501-11506. 277