On the Solvability of Beta-Ensembles when Beta is a Square Integer

dc.contributor.advisorSinclair, Christopher
dc.contributor.authorWells, Jonathan
dc.date.accessioned2019-09-18T19:28:40Z
dc.date.available2019-09-18T19:28:40Z
dc.date.issued2019-09-18
dc.description.abstractWe use combinatorial identities in the shuffle and exterior algebra to present hyperpfaffian formulations of partition functions for ß-ensembles with arbitrary probability measure when ß is a square integer. This is an analogue of the de Bruijn integral identities for the ß = 1 and ß = 4 ensembles. We also generalize several classic algebraic identities for determinants and Pfaffians to identities for Hyperpfaffians, extending the fermionic and bosonic Wick formulas which frequently arise in Quantum Field Theory.en_US
dc.identifier.urihttps://hdl.handle.net/1794/24923
dc.language.isoen_US
dc.publisherUniversity of Oregon
dc.rightsAll Rights Reserved.
dc.subjectHyperpfaffianen_US
dc.subjectPartition Functionen_US
dc.subjectPfaffianen_US
dc.subjectRandom Matrix Theoryen_US
dc.subjectSelberg Integralen_US
dc.subjectWick Formulaen_US
dc.titleOn the Solvability of Beta-Ensembles when Beta is a Square Integer
dc.typeElectronic Thesis or Dissertation
thesis.degree.disciplineDepartment of Mathematics
thesis.degree.grantorUniversity of Oregon
thesis.degree.leveldoctoral
thesis.degree.namePh.D.

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Wells_oregon_0171A_12521.pdf
Size:
517.45 KB
Format:
Adobe Portable Document Format